Спорт-вики — википедия научного бодибилдинга

Местные анестетики

Материал из SportWiki энциклопедии
Версия от 00:07, 25 февраля 2014; Febor (обсуждение | вклад) (Новая страница: «{{Клинфарм1}} == Местные анестетики == Местные анестетики уменьшают или устраняют боль, бло…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Источник:
Клиническая фармакология по Гудману и Гилману том 1.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

Местные анестетики

Местные анестетики уменьшают или устраняют боль, блокируя распространение возбуждения по нервам. Они взаимодействуют со специфическими рецепторами в просвете быстрых натриевых каналов, препятствуя току ионов через эти каналы. Обычно действие местных анестетиков ограничено зоной введения и быстро прекращается за счет диффузии в окружающие ткани. Химические и фармакологические свойства каждого препарата определяют показания к его клиническому применению. В зависимости от способа введения местного анестетика различают поверхностную, инфильтрационную, инфильтрационно-проводниковую (блокаду обширных полей), проводниковую, в/в регионарную, спинномозговую и эпидуральную анестезию. В этой главе обсуждаются механизм действия местных анестетиков, показания к их применению, пути введения и побочные эффекты. Антиаритмические свойства местных анестетиков рассматриваются в гл. 35.

Общие сведения

В достаточной концентрации местные анестетики обратимо подавляют генерацию потенциала действия, блокируя распространение возбуждения по нервам. Они могут действовать на любые отделы нервной системы и на все виды нервных волокон, вызывая как потерю чувствительности, так и местный паралич. Эффекты местных анестетиков, введенных в терапевтических дозах, полностью обратимы: функция нерва восстанавливается, а признаки повреждения нервных волокон или нейронов отсутствуют.

Историческая справка. Анестезирующие свойства первого местного анестетика — кокаина — были открыты случайно во второй половине XIX века. Кокаин в большом количестве содержится в листьях коки (Erythroxylum coca). Жители Анд еще много веков назад использовали экстракт этих листьев, оказывающий психостимулирующее действие и вызывающий эйфорию. Кокаин бьш впервые выделен Альбертом Ниманом в 1860 г. Как это было принято среди химиков в то время, Ниман попробовал новое вещество на вкус и заметил, что при этом немеет язык. Физиологические свойства кокаина изучал Зигмунд Фрейд, а Карл Коллерв 1884 г. стал использовать кокаин в качестве местного анестетика при офтальмологических операциях. Вскоре Халстед предложил применять кокаин для инфильтраиионной и проводниковой анестезии. Эти открытия привели к созданию множества местных анестетиков, применяемых в настоящее время.

Химические свойства

Структурно-функциональная зависимость. Кокаин — сложный эфир бензойной кислоты и 3-гидрокси-2-карбометокситропана (рис. 15.1). Высокая токсичность кокаина и его способность вызывать зависимость (гл. 24) ограничивают его применение, и поэтому уже в 1892 г. Эйнгорн и сотр. начали искать его синтетические аналоги. В 1905 г. был синтезирован прокаин, ставший на протяжении почти полувека основным и эталонным местным анестетиком. В настоящее время наиболее распространены прокаин, лидокаин, бупивакаин и тетракаин.

Из рис. 15.1 видно, что у типичных местных анестетиков имеются гидрофильная и гидрофобная части, соединенные эфирной или амидной связью. Вещества самых разных химических групп, обладающие таким строением, могут действовать как местные анестетики. Гидрофильная часть часто представляет собой третичный амин, хотя может быть и вторичным амином, гидрофобная часть должна иметь ароматическую структуру. фармакологические свойства местного анестетика определяются характером связи между гидрофильной и гидрофобной частями. Например, препараты с эфирной связью легко гидролизуются эстеразами плазмы.

Рисунок 15.1. Строение некоторых местных анестетиков. Хлоропрокаин отличается от прокаина атомом хлора во 2-й позиции ароматического кольца.

Подробно о физико-химических свойствах местных анестетиков и о взаимосвязи их структуры и активности можно прочитать, например, в обзоре Courtney and Strichartz (1987). В целом, чем препараты гидрофобнее, тем выше их активность и продолжительность действия. Это объясняется тем, что связывание таких препаратов с гидрофобными структурами тканей увеличивает их концентрацию в тканях и предохраняет от разрушения эстеразами плазмы и печеночными ферментами. Кроме того, полагают, что участки натриевых каналов, с которыми взаимодействуют местные анестетики, также гидрофобны (см. ниже); следовательно, гидрофобные препараты характеризуются большим сродством к рецептору. Однако с увеличением гидрофобности возрастает и токсичность местных анестетиков, и соответственно сужается их терапевтический диапазон.

Размер молекул местного анестетика также определяет длительность его взаимодействия с рецептором (Courtney and Strichartz, 1987). Чем меньше молекула, тем быстрее она отсоединяется от рецептора. Эффект таких препаратов существенно зависит от частоты импульсации в ткани, на которую они действуют (см. ниже, «Частотозависимость и потенциалзависимость действия местных анестетиков»).

Механизм действия

Местные анестетики блокируют возникновение и проведение нервного импульса. Точкой их приложения служит клеточная мембрана: блокаду проведения нервного импульса можно вызвать и в перфузируемом гигантском аксоне кальмара (в этом препарате аксоплазма заменена на солевой раствор).

В основе действия местных анестетиков лежит уменьшение или полное подавление временного увеличения натриевой проницаемости, в норме вызываемого небольшой деполяризацией (гл. 12; Strichartz and Ritchie, 1987). Это свойство местных анестетиков обусловлено их прямым взаимодействием с быстрыми натриевыми каналами. По мере действия анестетика на нерв порог возбудимости постепенно возрастает, скорость нарастания потенциала действия уменьшается, проведение замедляется и фактор надежности проведения понижается. Все это затрудняет распространение потенциала действия и в конечном счете вызывает блокаду проведения.

Помимо быстрых натриевых каналов местные анестетики могут взаимодействовать и с другими мембранными белками (Butterworth and Strichartz, 1990), в частности блокировать калиевые каналы (Strichartz and Ritchie, 1987). Однако, поскольку этот эффект возникает лишь при высокой концентрации местного анестетика, блокада проведения не сопровождается существенными изменениями потенциала покоя.

Четвертичные аналоги местных анестетиков блокируют проведение лишь при введении внутрь перфузируе-мого гигантского аксона кальмара; при воздействии на аксон снаружи проведение не нарушается. Это позволяет предположить, что точка приложения местных анестетиков достижима лишь со стороны цитоплазмы (Narahashi and Frazier, 1971; Strichartz and Ritchie, 1987). Таким образом, для того, чтобы эти препараты оказывали свое действие, они должны пройти через мембрану.

Существовали различные гипотезы молекулярного механизма действия местных анестетиков (Courtney and Strichartz, 1987). Однако в настоящее время общепринято, что местные анестетики взаимодействуют с одним или более специфическими рецепторами внутри быстрых натриевых каналов (Butterworth and Strichartz, 1990). Биохимические, биофизические и молекулярно-биологические исследования двух последних десятилетий существенно расширили представления о строении и функции этих и других потенциалзависимых каналов (гл. 12; Catterall,2000). Натриевые каналы головного мозга млекопитающих — это гетеротримерные комплексы гликозилированных белков. В этих комплексах, общая молекулярная масса которых превышает 300 000, различают а-субъединицу (молекулярная масса — 260 000), β1субъединицу (молекулярная масса — 36 000) и β2-субъединицу (молекулярная масса — 33 000). Альфа-субъединица состоит из четырех гомологичных доменов (I—IV), каждый из которых содержит шесть трансмембранных а-спирапьных сегментов (SI—S6; рис. 15.2) и внутримембранную петлю. Полагают, что собственно натриевый канал (трансмембранная пора, избирательно пропускающая ионы натрия) располагается в центре почти симметричной структуры, образованной четырьмя указанными доменами. Канал открывается за счет смещения потенциалчув-ствительных (воротных) структур в ответ на изменение мембранного потенциала. Потенциалчувствительные структуры входят в состав четвертых сегментов (S4) всех доменов. Эти сегменты гидрофобны и несут положительный заряд, поскольку содержат положительно заряженные остатки лизина или аргинина в каждом третьем положении. Полагают, что при изменениях мембранного потенциала эти остатки смещаются перпендикулярно плоскости мембраны, запуская ряд последовательных конформационных изменений во всех четырех доменах; это в конечном счете ведет коткрыванию канала (рис. 15.2; Catterall, 1988).

Трансмембранная пора натриевого канала, по-видимому, образована сегментами S5 и S6, а также короткими сегментами SS1 и SS2, расположенными между ними и формирующими внутримембранную петлю. Аминокислотные остатки этих коротких сегментов играют ключевую роль в проводимости и избирательности канала.

Через несколько миллисекунд после открывания натриевые каналы закрываются. Этот процесс называется инактивацией. Инактивационные ворота образованы короткой внутриклеточной петлей, соединяющей домены III и IV (рис. 15.2). При инактивации эта петля прикрывает внутреннее устье канала — возможно, связываясь с рецептором в области краев этого устья.

Аминокислотные остатки, участвующие во взаимодействии с местными анестетиками, обнаружены в сегменте S6 IV домена (Ragsdale et al., 1994). Гидрофобные аминокислотные остатки, расположенные в центре и в области внутриклеточного конца сегмента S6, могут непосредственно связываться с местным анестетиком (рис. 15.3). В эксперименте замена большего гидрофобного аминокислотного остатка (изолейцина) на меньший (аланин) в области внеклеточного конца сегмента S6 позволяет ионизированным молекулам местного анестетика пройти из внеклеточной жидкости к рецептору. Все это позволяет предположить, что рецептор, с которым взаимодействует местный анестетик, находится в области внутриклеточного конца натриевого канала и по крайней мере часть его образована аминокислотными остатками сегмента S6IV домена.

Частотозависимость и потенциалзависимость действия местных анестетиков. Выраженность блокады нерва под действием местного анестетика зависит от параметров раздражения нерва и от потенциала покоя. В состоянии покоя нерв намного менее чувствителен к местному анестетику, чем при непрерывной стимуляции. Чем выше частота стимуляции нерва и меньше (положительнее) потенциал покоя, тем сильнее действие анестетика на нерв.

Рисунок 15.2. Строение и функция быстрого Натриевого канала. А. Двумерное изображение быстрого натриевого канала головного мозга млекопитающих. Вне- и внутриклеточные петли изображены непрерывными линиями соответствующей длины; трансмембранные сегменты представлены в виде цилиндров. Знаком Щ обозначены участки гликозилирования. Видно, что строение всех четырех гомологичных доменов а-субъединицы одинаково. Активация. Сегменты S4 каждого домена а-субъединицы служат по-тенциалчувствительными структурами. Они несут положительный заряд (обозначен «+»), поскольку содержат положительно заряженные аминокислотные остатки в каждом третьем положении. Электрический заряд внутри клетки в покое отрицателен, и поэтому эти остатки притягиваются в направлении внутриклеточной поверхности мембраны. Пора. Трансмембранные сегменты S5 и S6, а также короткая внутримембранная петля между ними (сегменты SS1 и SS2 на рис. 15.3) формируют стенки поры в центре почти симметричного четырехугольника, образованного четырьмя доменами а-субъединицы (см. также рис. 15.2, Б). Аминокислотные остатки, обозначенные кружками в сегменте SS2, играют ключевую роль для проницаемости и избирательности канала, а также для связывания и действия блокаторов натриевых каналов тетродотоксина и сакситоксина. Инактивация. Короткая внутриклеточная петля между доменами 111 и IV играет роль инактивационных ворот. Полагают, что эта петля закрывает внутреннее устье канала через несколько миллисекунд после его открывания. Видимо, основное значение имеют три гидрофобных остатка (Иле— Фен—Мет), отмеченные на рисунке буквой «И»: они проникают во внутреннее устье канала и связываются со специфическим рецептором. Модуляция. Функция быстрого натриевого канала может меняться при фосфорилировании его структур. Так, фосфори-лирование протеинкиназой С инактивационных ворот между доменами III и IV замедляет инактивацию, а фосфорилирование участков внутриклеточной петли между доменами I и II протеинкиназой А или С уменьшает активацию. Б. Схематичное изображение четырехугольного расположения четырех доменов а-субъединицы (вид сверху). Представлена последовательность конфор-мационных изменений натриевого канала во время активации и инактивации. Во время деполяризации каждый из четырех доменов претерпевает конформационные изменения, приводящие к его активации. Как только все четыре домена активированы, канал открывается. Спустя несколько миллисекунд инактивационные ворота между доменами III и IV закрывают внутреннее устье канала, препятствуя дальнейшему току натрия. Catterall, 1988.

Рисунок 15.3. Рецептор местных анестетиков. Са-спиральным трансмембранным сегментом S6 IV домена (IVS6) соединены короткие сегменты SS1 и SS2, участвующие в формировании наружного устья канала. Кружками обозначены аминокислотные остатки в сегменте IVS6. Серым выделены три аминокислотных остатка, которым принадлежит основная роль во взаимодействии с местным анестетиком. Изображен местный анестетик лидокаин, связанный с двумя из этих остатков — Фен1764 (Ф) и Тир1771 (Т). Третий, отмеченный серым, остаток — Иле1760 (И). Его замещение меньшим аминокислотным остатком аланином с помощью направленного мутагенеза позволяет местным анестетикам проникать к рецептору снаружи; следовательно, Иле1760 формирует наружную границу рецептора. Ragsdale et al., 1994.

Такая частото- и потенциалзависимость действия местного анестетика объясняется следующими моментами:

  • ионизированные молекулы этих веществ достигают рецептора внутри быстрого натриевого канала только тогда, когда этот канал пребывает в открытом состоянии,
  • местные анестетики прочнее связываются с рецепторами при инактивированном состоянии натриевого канала и стабилизируют его в этом состоянии (Courtney and Strichartz, 1987; Butterworth and Strichartz, 1990).

Эти свойства местных анестетиков зависят от их рКа липофильности и размера молекулы. Так, частотозависимость действия местного анестетика определяется скоростью его диссоциации из комплекса с рецептором, а эта скорость тем выше, чем мельче и гидрофобнее молекула. Дело в том, что быстро диссоциирующие препараты активнее при высокой частоте раздражения нерва, поскольку только при такой частоте связывание с рецептором во время потенциала действия преобладает над диссоциацией в состоянии покоя. Частотозависимость блокады ионных каналов особенно важна для антиаритмических средств (гл. 35).

Зависимость чувствительности к местным анестетикам от типа нервного волокна

Несмотря на значительные индивидуальные особенности, в большинстве случаев после введения местного анестетика сначала исчезает болевая чувствительность, затем температурная, тактильная, проприоцептивная и, в последнюю очередь, развивается парез (табл. 15.1). Классические эксперименты на целых нервных стволах показали, что волна А5 составного потенциала действия, отражающая проведение возбуждения по медленным тонким миелиновым волокнам, уменьшается раньше и при меньших концентрациях кокаина, чем волна Аа, отражающая проведение по быстрым толстым волокнам (Gasser and Erlanger, 1929). В целом вегетативные волокна, тонкие безмиелиновые волокна группы С (болевая чувствительность) и тонкие миелиновые волокна группы А5 (болевая и температурная чувствительность) блокируются местными анестетиками раньше, чем толстые миелиновые волокна групп Ау, Ар и Аа (тактильная и проприоцептивная чувствительность и управление скелетными мышцами) (Raymond and Gis-sen, 1987). Различная скорость блокирования нервных волокон, отвечающих за проведение разных видов чувствительности, имеет большое практическое значение.

Точная причина различной чувствительности нервных волокон к местным анестетикам не известна. На сегодняшний день есть несколько предположений. Согласно классической гипотезе, основанной на экспериментах с целыми нервными стволами, чувствительность нервных волокон к местным анестетикам уменьшается с увеличением их толщины. В результате тонкие волокна, проводящие боль, характеризуются высокой чувствительностью к анестетикам, а толстые волокна, обеспечивающие движение, — низкой (Gasser and Erlanger, 1929). Однако при электрофизиологических исследованиях одиночных нервных волокон, выделенных из нервных стволов, установить зависимость чувствительности к местному анестетику от толщины волокна не удается (Franz and Perry, 1974; Fink and Cairns, 1984; Huang et al., 1997). Таким образом, толщина нервного волокна сама по себе вряд ли определяет его чувствительность к местным анестетикам. Однако с увеличением толщины нервного волокна увеличивается и расстояние между перехватами Ранвье. Поскольку для того, чтобы подавить проведение возбуждения по нерву, необходимо блокировать определенное количество перехватов Ранвье, тонкие волокна, где перехваты Ранвье располагаются ближе друг к другу, более чувствительны к местным анестетикам (Franz and Perry, 1974). Еще одной причиной могут быть различия в тканевых барьерах и особенности расположения в нервном стволе тонких волокон групп С и А8.

Роль pH

В неионизированном виде (то есть в виде сводобных аминов) местные анестетики плохо растворимы. В связи с этим они обычно выпускаются в виде водорастворимых солей, в основном гидрохлоридов. Поскольку местные анестетики — слабые основания (pK;, обычно составляет 8—9), их гидрохлориды — слабые кислоты. Это повышает стабильность эфиров местных анестетиков и вводимых вместе с ними сосудосуживающих средств. В обычных условиях pH растворов местных анестетиков быстро становится равным pH внеклеточной жидкости.

Через мембрану могут проходить только неионизированные формы местных анестетиков, но с натриевыми каналами они взаимодействуют в виде катионов. Об этом говорят данные опытов на безмиелиновых нервных волокнах млекопитающих (Ritchie and Greengard, 1966).

Оказалось, что проведение возбуждения можно блокировать и восстанавливать изменением pH омывающего нерв раствора соответственно до 7,2 и 9,6. Ведущая роль катионных форм была также продемонстрирована в опытах с добавлением третичных и четвертичных аминов местных анестетиков в раствор, омывающий гигантский аксон кальмара изнутри и снаружи (Narahashi and Frazier, 1971). Впрочем, даже неионизированные формы местных анестетиков обладают некоторой анестезирующей активностью (Butterworth and Strichartz, 1990).

Удлинение действия местных анестетиков с помощью сосудосуживающих средств

Длительность действия местного анестетика прямо пропорциональна времени, в течение которого препарат взаимодействует с нервом. Следовательно, увеличение этого времени удлиняет анестезию. Кокаин сам по себе сужает сосуды, усиливая действие норадреналина (гл. 6 и 10) и тем самым предотвращая собственное всасывание. Местные анестетики часто смешивают с сосудосуживающими средствами, обычно с адреналином; такие средства замедляют всасывание анестетика. При этом, с одной стороны, действие анестетика ограничивается местом введения, с другой — весь всасывающийся препарат успевает элиминироваться, и в результате уменьшаются системные побочные эффекты. В то же время адреналин расширяет сосуды скелетных мышц, стимулируя β2-адренорецепторы, и может усиливать побочные эффекты анестетика, введенного в мышцу.

Некоторые сосудосуживающие средства сами могут оказывать системные побочные эффекты (см. ниже). Кроме того, они замедляют заживление ран, могут вызвать отек или некроз после местной анестезии. Эти побочные эффекты отчасти обусловлены тем, что адренергические средства увеличивают потребление кислорода тканями, что в сочетании с сужением сосудов вызывает гипоксию и повреждение тканей. Введение местных анестетиков в сочетании с сосудосуживающими средствами в участки с недостаточным коллатеральным кровотоком чревато необратимым гипоксическим повреждением, некрозом и гангреной и потому противопоказано.

Побочные эффекты

Местные анестетики не только блокируют проведение по нервам, но и действуют на все возбудимые органы и ткани: ЦНС, вегетативные ганглии, нервно-мышечные синапсы и мышцы (Covino, 1987; Garfield and Gugino, 1987; Gintant and Hoffman, 1987). Опасность такого воздействия прямо пропорциональна количеству местного анестетика, попавшего в кровь.

ЦНС. Местные анестетики оказывают возбуждающее действие на ЦНС, вызывая беспокойство, тремор, а иногда и клонические судороги. В целом, чем активнее препарат, тем выше риск судорог. Таким образом, вероятность центральных побочных эффектов определяется свойствами самого анестетика и его концентрацией в крови. Вслед за возбуждением наступает угнетение ЦНС. Причиной смерти обычно становится остановка дыхания.

Как возбуждение, так и последующее угнетение ЦНС под действием местных анестетиков объясняется торможением нейронов; при этом возбуждение возникает в результате избирательного торможения тормозных нейронов. Быстрое в/в введение местного анестетика может привести к смерти без предшествующего возбуждения ЦНС или после лишь кратковременного возбуждения. Это обусловлено одновременным угнетением все* нейронов при высокой концентрации препарата. Лечение на поздней стадии отравления местными анестетиками заключается в обеспечении проходимости дыхательных путей и ИВЛ. На ранней стадии для предотвращения и устранения судорог в/в вводят бензодиазепины или быстродействующие барбитураты (гл. 17).

Хотя самый частый из центральных побочных эффектов местных анестетиков — сонливость, лидокаин может вызвать дисфорию или эйфорию, а также подергивания мышц. Более того, лидокаин и прокаин могут привести к потере сознания, которой предшествует лишь сонливость (Covino, 1987). Настроение и поведение может меняться под действием любого местного анестетика, но в особенности кокаина. Эти свойства кокаина, а также его способность вызывать зависимость обсуждаются в гл. 24.

Сердечно-сосудистая система. Попадая в кровоток, местные анестетики могут оказывать побочные эффекты на сердечно-сосудистую систему (Covino, 1987). Прежде всего они действуют на миокард, снижая его возбудимость, проводимость и сократимость. Кроме того, большинство местных анестетиков расширяют артериолы. Побочное действие на сердечно-сосудистую систему обычно наблюдается лишь при высокой концентрации анестетика в крови и сочетается с побочным действием на ЦНС. Изредка шок и летальный исход возможны и при меньшей концентрации анестетика, что можно объяснить действием на ведущий водитель ритма сердца или внезапной фибрилляцией желудочков. Впрочем, желудочковая тахикардия и фибрилляция желудочков — относительно редкие побочные эффекты местных анестетиков, за исключением бупивакаина. Действие лидокаина и прокаинамида, которые применяются в качестве антиаритмических препаратов, обсуждается в гл. 35. Необходимо отметить, что побочные эффекты местных анестетиков на сердечно-сосудистую систему могут возникать вследствие случайного внутрисосудистого введения препарата, особенно вместе с адреналином.

Гладкомышечные органы. Местные анестетики уменьшают сокращения интактного кишечника и изолированных полосок кишки (Zipf and Dittmann, 1971). Кроме того, они вызывают расслабление гладких мышц сосудов и бронхов, хотя в низких концентрациях могут сначала вызвать их сокращение (Covino, 1987). Спинномозговая или эпидуральная анестезия, а также введение местного анестетика в брюшную полость приводит к угнетению симпатической нервной системы, что сопровождается повышением тонуса органов ЖКТ (см. ниже). Местные анестетики увеличивают тонус покоя и уменьшают сократимость изолированных полосок миометрия. Однако сократимость матки при регионарной анестезии во время родов снижается редко.

Нервно-мышечные и вегетативные межнейронные синапсы. Местные анестетики нарушают нервно-мышечную передачу. Например, прокайн подавляет сокращение скелетной мышцы в ответ на максимальное ритмическое раздражение двигательного нерва и на введение ацетилхолина; введенный в той же концентрации прокаин не препятствует сокращению мышцы в ответ на ее прямое электрическое раздражение. В высоких концентрациях местные анестетики нарушают передачу возбуждения в вегетативных ганглиях вследствие блокады ионных каналов, сопряженных с N-холинорецепторами (Neher and Stein-bach, 1978; Chamet et al., 1990).

Аллергические реакции

Такие реакции на местные анестетики редки. Они могут проявляться аллергическим дерматитом или приступом бронхиальной астмы (Covino, 1987). Аллергические реакции необходимо отличать от побочных эффектов местных анестетиков и вводимых вместе с ними сосудосуживающих средств. Аллергические реакции возникают почти исключительно при использовании препаратов из группы эфиров. Среди анестетиков этой группы возможны перекрестные аллергические реакции: например, при аллергии к прокаину возможна и аллергия к тетракаину, поскольку в процессе их обмена образуются одинаковые метаболиты. Средства из группы амидов сами по себе почти не вызывают аллергические реакции, однако их растворы могут содержать консерванты (например, метилпарабен), к которым возможна аллергия (Covino, 1987). Растворы местных анестетиков с сосудосуживающими средствами также могут вызывать аллергию, поскольку содержат сульфит.

Метаболизм

Большое практическое значение имеет метаболизм местных анестетиков, поскольку их токсичность определяется главным образом равновесием между их всасыванием и элиминацией. Выше уже отмечалось, что всасывание анестетика можно уменьшить, добавляя в раствор сосудосуживающее средство. Скорость метаболизма местных анестетиков существенно различается и во многом определяет безопасность их применения. Поскольку токсичность зависит от концентрации свободного препарата в крови, связывание его с белками плазмы и тканей уменьшает токсичность. Так, при в/в регионарной анестезии конечности около половины введенного анестетика остается связанным с белками тканей через 30 мин после снятия жгута. Легкие также могут связывать большое количество анестетика (Arthur, 1987).

Местные анестетики из группы эфиров (например, тетракаин) инактивируются путем гидролиза эстеразами плазмы, возможно псевдохолинэстеразой. Печень также участвует в гидролизе местных анестетиков. Поскольку в СМЖ эстераз почти нет, при интратекальном введении анестезия сохраняется до тех пор, пока препарат не всосется в кровь.

Местные анестетики из группы амидов метаболизируются в основном микросомальными ферментами печени путем N-деалкилирования и последующего гидролиза (Arthur, 1987). Исключение составляет прилокаин: он сначала гидролизуется, в результате чего образуется ортотолуидин, способный вызвать метгемоглобинемию. Местные анестетики из группы амидов с осторожностью применяют при тяжелых заболеваниях печени. Эти препараты активно (на 55—95%) связываются с белками плазмы, преимущественно с кислым а,-гликопротеидом. Уровень этого белка повышается при онкологических заболеваниях, хирургических вмешательствах, травмах, инфаркте миокарда, курении, уремии и уменьшается, например, при приеме пероральных контрацептивов. В зависимости от концентрации белков плазмы меняется количество местного анестетика, поступающего в печень, и, следовательно, его токсичность. Кроме того, связывание местных анестетиков с белками плазмы меняется с возрастом. У новорожденных относительно мало белков, с которыми связываются эти препараты, поэтому выше вероятность побочных эффектов. На метаболизм анестетиков влияют не только белки плазмы. Важную роль в распределении местных анестетиков из группы амидов может играть их захват легкими (Arthur, 1987).