Спорт-вики — википедия научного бодибилдинга

Редактирование: Омега-5 жирные кислоты: научный обзор

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 3: Строка 3:
 
== Омега-5 гранатовая (пуниковая) кислота (ГК) из масла зерен граната (МЗГ) ==
 
== Омега-5 гранатовая (пуниковая) кислота (ГК) из масла зерен граната (МЗГ) ==
  
Источниками [[Биологически активные добавки|БАДов]], применяемых в [[Спортивная медицина|спортивной медицине]], является как '''сок''' (ГС) и '''экстракт (ГЭ) граната''', которые получают путем отжима мякоти, так и '''масло из зерен граната''' (МЗГ, PSO - Pomegranate Seed Oil). И если сок и экстракт обладают [[Антиоксидантные добавки|антиоксидантными]] (антиокислительными) свойствами за счет полифенолов, то масло зерен граната (зерна ранее, как правило, шли в отходы) на 70-80% содержит '''гранатовую кислоту''' (ГК), участвующую в регуляции липидного обмена.  
+
Источниками [[Биологически активные добавки|БАДов]], применяемых в спортивной медицине, является как '''сок''' (ГС) и '''экстракт (ГЭ) граната''', которые получают путем отжима мякоти, так и '''масло из зерен граната''' (МЗГ, PSO - Pomegranate Seed Oil). И если сок и экстракт обладают [[Антиоксидантные добавки|антиоксидантными]] (антиокислительными) свойствами за счет полифенолов, то масло зерен граната (зерна ранее, как правило, шли в отходы) на 70-80% содержит '''гранатовую кислоту''' (ГК), участвующую в регуляции липидного обмена.  
  
Исследования масла зерен граната (МЗГ - PSO) интенсивно развивались с 2007 года, и сейчас можно с уверенностью говорить о значительных перспективах основного компонента МЗГ - ГК в клинической и спортивной медицине.  
+
Исследования масла зерен граната (МЗГ - PSO) интенсивно развивались с 2007 года, и сейчас можно с уверенностью говорить о значительных перспективах основного компонента МЗГ - ГК в клинической и спортивной медицине. Только за период с 2007 по 2014 год опубликовано 15 обзорных статей в крупных научных журналах. ГК (гранатовая, пуниковая кислота - punicic acid) составляет 55-82% от общего содержания жирных кислот в МЗГ (в зависимости от сорта и места произрастания) и является полиненасыщенной жирной кислотой (омега-5 ПНЖК). Другие жирные кислоты (ЖК) представлены пальмитиновой (4%), олеиновой (6%) и линолевой (6,5%) кислотами. Сама ГК является изомером конъюгированной формы альфа-линоленовой кислоты – омега-5 длинноцепочечной ПНЖК (см. далее в обзоре). Важными компонентами МЗГ граната являются также: особая форма витамина Е (гамма-токоферол, а не как обычно, альфа-токоферол) и растительный эстроген (17-альфа-эстрадиол). На сегодняшний день МЗГ – основной источник получения омега-5 ПНЖК - ГК.
 
 
'''Гранатовая, пуниковая кислота''' (''punicic acid'') составляет 55-82% от общего содержания жирных кислот в МЗГ (в зависимости от сорта и места произрастания) и является [[Полиненасыщенные жирные кислоты|полиненасыщенной жирной кислотой]] (омега-5 ПНЖК). Другие жирные кислоты (ЖК) представлены пальмитиновой (4%), олеиновой (6%) и линолевой (6,5%) кислотами. Сама ГК является изомером конъюгированной формы альфа-линоленовой кислоты – омега-5 длинноцепочечной ПНЖК (см. далее в обзоре). Важными компонентами МЗГ граната являются также: особая форма [[Витамин Е|витамина Е]] (гамма-токоферол, а не как обычно, альфа-токоферол) и растительный [[Эстрогены|эстроген]] (17-альфа-эстрадиол). На сегодняшний день МЗГ – основной источник получения омега-5 ПНЖК - ГК.
 
  
 
=== Химическая структура ГК ===
 
=== Химическая структура ГК ===
Строка 15: Строка 13:
 
=== Характеристика и состав масла зерен граната ===
 
=== Характеристика и состав масла зерен граната ===
  
Самым значимым в клиническом плане компонентом МЗГ, как уже отмечалось, является ГК (гранатовая, пуниковая кислота) – РА C18:3 – 9c, 11t, 13c – позиционный и геометрический изомер α-линоленовой кислоты (LNA, C18:3 – 9c, 12c, 15c). Ее структура содержит две cis-двойные связи и одну trans-двойную связь, роль которых важна в понимании влияния ГК на физиологические процессы. По данным W.Elfalleh и соавторов<ref name="Elfalleh">Elfalleh, W., Ying, M., Nasri, N., Sheng-Hua, H., Guasmi, F.,  Ferchichi, A. Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds. International Journal of Food Sciences and Nutrition, 2011, 62(3), 200-206.</ref>, уже установленные [[Антиоксидантная защита организма|антиоксидантные]] и антилипидемические свойства МЗГ делают его претендентом на одно из ключевых мест в классификации природных протекторов для применения во многих областях медицины. Хотя методы выделения и идентификации конъюгированных ЖК хорошо отработаны, именно для РА такие исследования очень редки. В зависимости от места произрастания, содержание РА широко варьирует (от 55 до 81% от общего содержания жирных кислот в МЗГ<ref>De Melo I.L.P., de Carvalho E.B.T. et al. Pomegranate Seed Oil (Punica Granatum L.): A Source of Punicic Acid (Conjugated α-Linolenic Acid). J.Human Nutrition and Food Science, 2014, 2(1): 1024-1035.</ref>). Наиболее качественным и стандартизированным по ГК продуктом  считается МЗГ, полученное путем холодного прессования отходов производства [[Гранатовый сок|гранатового сока]] (ГС) из пульпы граната<ref name="Melo">De Melo I.L.P., de Carvalho E.B.T. et al. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Science and Technology, 2016, 36(1): 132-139.</ref>. С помощью метода газовой хроматографии установлено, что такое МЗГ содержит ГК в узких пределах 50-55%. Путем обогащения доля ГК в общем количестве жирных кислот может быть доведена до 80%. Важной отличительной чертой МЗГ является наличие высоких уровней [[токоферол]]а (табл.1).
+
Самым значимым в клиническом плане компонентом МЗГ, как уже отмечалось, является ГК (гранатовая, пуниковая кислота) – РА C18:3 – 9c, 11t, 13c – позиционный и геометрический изомер α-линоленовой кислоты (LNA, C18:3 – 9c, 12c, 15c). Ее структура содержит две cis-двойные связи и одну trans-двойную связь, роль которых важна в понимании влияния ГК на физиологические процессы. По данным W.Elfalleh и соавторов (2011), уже установленные антиоксидантные и антилипидемические свойства МЗГ делают его претендентом на одно из ключевых мест в классификации природных протекторов для применения во многих областях медицины. Хотя методы выделения и идентификации конъюгированных ЖК хорошо отработаны, именно для РА такие исследования очень редки. В зависимости от места произрастания, содержание РА широко варьирует (от 55 до 81% от общего содержания жирных кислот в МЗГ - I.L.P.de Melo и соавт., 2014). Наиболее качественным и стандартизированным по ГК продуктом  считается МЗГ, полученное путем холодного прессования отходов производства гранатового сока (ГС) из пульпы граната (I.L.P. de Melo и соавт., 2016). С помощью метода газовой хроматографии установлено, что такое МЗГ содержит ГК в узких пределах 50-55%. Путем обогащения доля ГК в общем количестве жирных кислот может быть доведена до 80%. Важной отличительной чертой МЗГ является наличие высоких уровней токоферола (табл.1).
  
'''Таблица 1. Содержание токоферолов и фитостеролов в масле зерен граната (МЗГ) и препарате сравнения – льняном масле (ЛМ) в мг/100 г'''<ref name="Melo" />. Остальные объяснения в тексте.
+
'''Таблица 1. Содержание токоферолов и фитостеролов в масле зерен граната (МЗГ) и препарате сравнения – льняном масле (ЛМ) в мг/100 г''' (I.L.P. de Melo и соавт., 2016). Остальные объяснения в тексте.
  
 
'''Токоферолы (мг/100 г)'''
 
'''Токоферолы (мг/100 г)'''
Строка 44: Строка 42:
 
|}
 
|}
 
 
Как видно из таблицы 1, уровни всех токоферолов в МЗГ во много раз выше, чем в [[Льняное масло|льняном масле]] (ЛМ). Однако, в данном исследовании не выявлено высоких уровней альфа-токоферола, как отмечалось в предшествующей литературе (например, 300 мг/100 г), а доминирующей формой был гамма-токоферол (153 мг/100 г). Существуют, видимо, различия между МЗГ из разных источников, что требует предварительного анализа на содержание альфа-токоферола в конкретном масле. Так, W.Elfalleh и соавторы<ref name="Elfalleh" /> обнаружили в МЗГ граната из Туниса преимущественно альфа-токоферол (более 53% от общего количества токоферолов). В их работе также отмечена прямая корреляция между высокими уровнями токоферолов в МЗГ и его антиоксидантной активностью (способностью связывать свободные кислородные радикалы). Среди фитостеролов МЗГ доминирующим был бета-ситостерол.
+
Как видно из таблицы 1, уровни всех токоферолов в МЗГ во много раз выше, чем в льняном масле (ЛМ). Однако, в данном исследовании не выявлено высоких уровней альфа-токоферола, как отмечалось в предшествующей литературе (например, 300 мг/100 г), а доминирующей формой был гамма-токоферол (153 мг/100 г). Существуют, видимо, различия между МЗГ из разных источников, что требует предварительного анализа на содержание альфа-токоферола в конкретном масле. Так, W.Elfalleh и соавторы (2011) обнаружили в МЗГ граната из Туниса преимущественно альфа-токоферол (более 53% от общего количества токоферолов). В их работе также отмечена прямая корреляция между высокими уровнями токоферолов в МЗГ и его антиоксидантной активностью (способностью связывать свободные кислородные радикалы). Среди фитостеролов МЗГ доминирующим был бета-ситостерол.
 
+
I.L.P. de Melo и соавторы (2016) исследовали также химическую стабильность к окислению МЗГ при сопоставлении с ЛМ (см. графики ниже), что является важным показателем в практическом плане (хранение сырья, производство и др. процессы доставки до конечного потребителя).  
I.L.P. de Melo и соавторы<ref name="Melo" /> исследовали также химическую стабильность к окислению МЗГ при сопоставлении с ЛМ (см. графики ниже), что является важным показателем в практическом плане (хранение сырья, производство и др. процессы доставки до конечного потребителя).  
 
 
[[Image:Omega_Ris_2.jpg|250px|thumb|right|Рис.2. Кинетика ингибирования окисления бета-каротина под влиянием льняного масла – ЛМ (LO), масла зерен граната (МЗГ - PSO) и синтетического антиоксиданта (ВНТ). Остальные объяснения в тексте.]]
 
[[Image:Omega_Ris_2.jpg|250px|thumb|right|Рис.2. Кинетика ингибирования окисления бета-каротина под влиянием льняного масла – ЛМ (LO), масла зерен граната (МЗГ - PSO) и синтетического антиоксиданта (ВНТ). Остальные объяснения в тексте.]]
 
Как видно из рис.2, МЗГ демонстрирует хорошую устойчивость к окислению по сравнению с льняным маслом (ЛМ), несмотря на высокий уровень ненасыщенных жирных кислот, что облегчает процесс производства и хранения. К недостаткам готовых форм омега-5 ПНЖК (ГК) следует отнести высокую себестоимость: из 500 кг граната получается всего 1 кг МЗГ.
 
Как видно из рис.2, МЗГ демонстрирует хорошую устойчивость к окислению по сравнению с льняным маслом (ЛМ), несмотря на высокий уровень ненасыщенных жирных кислот, что облегчает процесс производства и хранения. К недостаткам готовых форм омега-5 ПНЖК (ГК) следует отнести высокую себестоимость: из 500 кг граната получается всего 1 кг МЗГ.
  
== Экспериментальные и клинические исследования масел зерен граната и гранатовой кислоты ==
+
== Экспериментальные и клинические исследования МЗГ и ГК ==
  
Наиболее масштабные и качественные исследования клинических свойств МЗГ выполнены в последние годы в Иране и Индии – странах-производителях высококачественных сортов граната, а также в России и США. Это нашло отражение в ряде обзоров<ref name="Abidov">Abidov M., Ramazanov Z., Seifulla R., Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes.Metab., 2010, 12(1):72-81</ref><ref>Jasuja N.D., Saxena R., Chandra S., Sharma S. Pharmacological characterization and beneficial uses of Punica Granatum. Asian J. Plant Sci., 2012, 11(6): 251-267.</ref><ref>Mirzaee S. Studying seed and oil physicochemical characteristics of four Iranian pomegranate (Punica granatum L.) varieties. Int.J.BioSci., 2014, 4(8): 78-86. </ref><ref>Boroushaki M.T., Mollazadeh H., Afshari R. Pomegranate seed oil: A comprehensive review on its therapeutic effects. IJPSR, 2016, 7(2): 430-442. </ref><ref>Aruna P., Venkataramanamma D., Kumar Singh A., Singh, R.P. Health Benefits of Punicic Acid: A Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(1): 16-27.</ref>.  
+
Наиболее масштабные и качественные исследования клинических свойств МЗГ выполнены в последние годы в Иране и Индии – странах-производителях высококачественных сортов граната, а также в России и США. Это нашло отражение в ряде обзоров (M.Abidov и соавт., 2010; Jasuja N.D. и соавт., 2012; S.Mirzaee, 2014; M.T.Boroushaki и соавт., 2016; P.Aruna и соавт., 2016 и др.).  
 
   
 
   
=== Метаболизм гранатовой кислоты в норме и при патологии ===
+
=== Метаболизм ГК в норме и при патологии ===
  
Является незаменимой ПНЖК. В рандомизированном контролируемом исследовании G.F.Yuan и соавторов<ref>Yuan G.F., Sinclair A.J., Li D. Incorporation and metabolismof punicic acid in healthy young humans. Mol. Nutr. Food Res., 2009, 53, 1336 – 1342.</ref> изучены поступление и метаболизм ГК у 30 молодых здоровых людей. Гранатовая кислота принималась внутрь в дозе содержащей 3 г в день в форме триацилглицеролов в течение 28 дней. Контрольная группа получала то же количество подсолнечного масла. Через 28 дней концентрация ГК в плазме крови повышалась с 0 до 0,47%, а в мембранах эритроцитов – с 0 до 0,37%. При этом происходила химическая трансформация ГК с образованием более насыщенной формы - cis9,trans11-18:2 (сама ГК -  cis9,trans11,cis13-18:3). Других изменений состава тела, профиля липидов не обнаружено, что, естественно, связано с отсутствием исходных нарушений физиологии и биохимии организма.
+
Является незаменимой ПНЖК. В рандомизированном контролируемом исследовании G.F.Yuan и соавторов (2009) изучены поступление и метаболизм ГК у 30 молодых здоровых людей. ГК принималась внутрь в дозе содержащей 3 г в день в форме триацилглицеролов в течение 28 дней. Контрольная группа получала то же количество подсолнечного масла. Через 28 дней концентрация ГК в плазме крови повышалась с 0 до 0,47%, а в мембранах эритроцитов – с 0 до 0,37%. При этом происходила химическая трансформация ГК с образованием более насыщенной формы - cis9,trans11-18:2 (сама ГК -  cis9,trans11,cis13-18:3). Других изменений состава тела, профиля липидов не обнаружено, что, естественно, связано с отсутствием исходных нарушений физиологии и биохимии организма.
 
 
В условиях исходно нарушенного метаболизма, в частности, [[Ожирение|ожирения]], ГК проявляет свои положительные свойства.  Существует достаточно ограниченное количество научных исследований метаболических эффектов омега-5 ПНЖК. Однако некоторые моменты можно считать установленными. Так К.Koba и соавторы (2002, 2007) в экспериментальных условиях наблюдали снижение висцерального жира (в брюшной полости под диафрагмой) после 4-х недель приема пищи, обогащенной омега-5 ПНЖК (концентрация в экспериментальной диете 0,12-1,2%). Такое уменьшение обычно трудноустраняемого жира носило дозо-зависимый и время-зависимый характер. Параллельно изменялся и профиль липидов: снижался общий холестерол и уровень триглицеридов в печени. Важной особенностью  омега-5 ПНЖК (ГК) являлась способность снижать чувствительность организма к нагрузке атерогенными («вредными») жирными кислотами, т.е. повышалась переносимость жировой нагрузки<ref>Yang L., Leung K.Y., Cao Y. et al. Alphalinolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br.J.Nutr., 2005, 93: 433-438.</ref>. В двойном-слепом плацебо-контролируемом исследовании у людей с исходно повышенным уровнем триглицеридов в крови прием омега-5 ПНЖК приводил к их существенному снижению<ref>Mirmiran P., Fazeli M.R., Asghari G. et al. Effect of pomegranate seed oil on hyperlipidaemic subjects: a double-blind placebo-controlled clinical trial. Br.J.Nutr., 2010, 104: 402-406.</ref>. R.Hontecillas и соавторы<ref>Hontecillas R., O’Shea M., Einerhand A. et al. Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J. Am.Coll.Nutr., 2009, 28: 184-195.</ref> показали, что диета, обогащенная ГК (62 мг/день) ускоряет метаболизм глюкозы в крови, нормализует ее уровень в условиях экспериментального ожирения. B.K.McFarlin и соавторы<ref>McFarlin B.K., Strohacker K.A., Kueht M.L. Pomegranate seed oil consumption during a period of high-fat feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br.J.Nutr., 2009; 102:54-59.</ref> выявили способность омега-5 ПНЖК повышать чувствительность тканей к [[инсулин]]у и снижать риск развития [[Сахарный диабет второго типа|диабета 2 типа]]. В эксперименте подтверждены противовоспалительные свойства ГК<ref>Caligiani A., Bonzanini F., Palla G. et al. Characterization of a potential nutraceutical ingredient: Pomegranate (Punica granatum L.) seed oil unsaponifiable fraction. Plant Foods for Human Nutrition, 2010, 65: 277-283.</ref>.
 
  
 +
В условиях исходно нарушенного метаболизма, в частности, ожирения, ГК проявляет свои положительные свойства.  Существует достаточно ограниченное количество научных исследований метаболических эффектов омега-5 ПНЖК. Однако некоторые моменты можно считать установленными. Так К.Koba и соавторы (2002, 2007) в экспериментальных условиях наблюдали снижение висцерального жира (в брюшной полости под диафрагмой) после 4-х недель приема пищи, обогащенной омега-5 ПНЖК (концентрация в экспериментальной диете 0,12-1,2%). Такое уменьшение обычно трудноустраняемого жира носило дозо-зависимый и время-зависимый характер. Параллельно изменялся и профиль липидов: снижался общий холестерол и уровень триглицеридов в печени. Важной особенностью  омега-5 ПНЖК (ГК) являлась способность снижать чувствительность организма к нагрузке атерогенными («вредными») жирными кислотами, т.е. повышалась переносимость жировой нагрузки (L.Yang и соавт., 2005). В двойном-слепом плацебо-контролируемом исследовании у людей с исходно повышенным уровнем триглицеридов в крови прием омега-5 ПНЖК приводил к их существенному снижению (P.Mirmiran и соавт., 2010). R.Hontecillas и соавторы (2009) показали, что диета, обогащенная ГК (62 мг/день) ускоряет метаболизм глюкозы в крови, нормализует ее уровень в условиях экспериментального ожирения. B.K.McFarlin и соавторы (2009) выявили способность омега-5 ПНЖК повышать чувствительность тканей к инсулину и снижать риск развития диабета 2 типа. В эксперименте подтверждены противовоспалительные свойства ГК (A.Caligiani и соавт., 2010).
 
К сожалению, в настоящее время отсутствуют прямые данные о сочетанном влиянии омега-5 ПНЖК (ГК) и физических нагрузок на состав тела, биохимию крови и другие показатели функционального состояния тренирующихся лиц. Интересным и перспективным представляется дальнейшее исследование эффектов омега-5 ПНЖК в условиях повышенных физических нагрузок различного типа.
 
К сожалению, в настоящее время отсутствуют прямые данные о сочетанном влиянии омега-5 ПНЖК (ГК) и физических нагрузок на состав тела, биохимию крови и другие показатели функционального состояния тренирующихся лиц. Интересным и перспективным представляется дальнейшее исследование эффектов омега-5 ПНЖК в условиях повышенных физических нагрузок различного типа.
  
Строка 66: Строка 62:
 
=== Ксантиген (Xanthigen) ===
 
=== Ксантиген (Xanthigen) ===
 
[[Image:Omega_Ris_3.jpg|250px|thumb|right|Рис.3. Влияние Ксантигена при курсовом назначении (16 недель – ось абсцисс) на вес тела у женщин (n=151) (ось ординат). Квадраты – Ксантиген, треугольники – плацебо. Стрелкой отмечено начало (6 неделя) тенденции к снижению веса в группе с Ксантигеном по сравнению с плацебо (M.Abidov и соавт., 2010). ]]
 
[[Image:Omega_Ris_3.jpg|250px|thumb|right|Рис.3. Влияние Ксантигена при курсовом назначении (16 недель – ось абсцисс) на вес тела у женщин (n=151) (ось ординат). Квадраты – Ксантиген, треугольники – плацебо. Стрелкой отмечено начало (6 неделя) тенденции к снижению веса в группе с Ксантигеном по сравнению с плацебо (M.Abidov и соавт., 2010). ]]
'''Ксантиген''' представляет собой комбинированный препарат ГК и фукоксантина (антиоксидант из группы астаксантина в виде экстракта из бурых морских водорослей - самый распространеный каротиноид).
+
Ксантиген представляет собой комбинированный препарат ГК и фукоксантина (антиоксидант из группы астаксантина в виде экстракта из бурых морских водорослей - самый распространеный каротиноид – см. подробнее в обзоре по антиоксидантам-каротиноидам).
 
 
В работе M.Abidov и соавторов<ref name="Abidov" /> исследованы эффекты Ксантигена и его отдельных компонентов на вес тела, жировую массу, липиды печени, биохимию крови и расход энергии в покое (REE) у 151 женщины с ожирением и неалкогольными заболеваниями печени. Исследование проводилось в течение 16 недель и было рандомизированным двойным-слепым и плацебо-контролируемым. Применялась формула Ксантигена-600/2,4 мг (300 мг масла зерен граната с содержанием ГК 70% + 300 мг экстракта бурых морских водорослей, содержащих 2,4 мг фукоксантина). Через 16 недель (рис.3) наблюдалось достоверное снижение веса тела (минус 4,9-5,5 кг), окружности талии, содержания жира в печени, активности печеночных ферментов, триглицеридов сыворотки крови и С-реактивного белка. Сам фукоксантин (> 2.4 мг) и другая формула Ксантигена с меньшим содержанием активных веществ – Ксантиген-400/1,6 мг (200 мг масла зерен граната с содержанием ГК 70% + 200 мг экстракта бурых морских водорослей, содержащих 1,6 мг фукоксантина) достоверно увеличивали REE по сравнению с плацебо. Таким образом, ''Ксантиген способствует потере веса, снижает общее содержание жира в организме и в печени, улучшает функцию печени и увеличивает расход энергии в покое у женщин с ожирением''. Авторы делают заключение о целесообразности включения Ксантигена в качестве пищевой добавки в нутриционную программу контроля веса у женщин.
+
В работе M.Abidov и соавторов (2010) исследованы эффекты Ксантигена и его отдельных компонентов на вес тела, жировую массу, липиды печени, биохимию крови и расход энергии в покое (REE) у 151 женщины с ожирением и неалкогольными заболеваниями печени. Исследование проводилось в течение 16 недель и было рандомизированным двойным-слепым и плацебо-контролируемым. Применялась формула Ксантигена-600/2,4 мг (300 мг масла зерен граната с содержанием ГК 70% + 300 мг экстракта бурых морских водорослей, содержащих 2,4 мг фукоксантина). Через 16 недель (рис.3) наблюдалось достоверное снижение веса тела (минус 4,9-5,5 кг), окружности талии, содержания жира в печени, активности печеночных ферментов, триглицеридов сыворотки крови и С-реактивного белка. Сам фукоксантин (> 2.4 мг) и другая формула Ксантигена с меньшим содержанием активных веществ – Ксантиген-400/1,6 мг (200 мг масла зерен граната с содержанием ГК 70% + 200 мг экстракта бурых морских водорослей, содержащих 1,6 мг фукоксантина) достоверно увеличивали REE по сравнению с плацебо. Таким образом, ''Ксантиген способствует потере веса, снижает общее содержание жира в организме и в печени, улучшает функцию печени и увеличивает расход энергии в покое у женщин с ожирением''. Авторы делают заключение о целесообразности включения Ксантигена в качестве пищевой добавки в нутриционную программу контроля веса у женщин.
 
   
 
   
Исследование Ch-S.Lai и соавторов<ref>Lai Ch-S., Tsai M.L., Badmaev V. et al. Xanthigen Suppresses Preadipocyte Differentiation and Adipogenesis through Down-regulation of PPARγ and C/EBPs and Modulation of SIRT-1, AMPK, and FoxO Pathways. J. Agric. Food Chem., 2012, 60 (4):1094–1101.</ref> показало, что возможными механизмами жироснижающего эффекта Ксантигена является мощное и дозо-зависимое подавление накопления липидов в адипоцитах, превышающее действие каждого из двух компонентов БАДа (фукоксантина и ГК) в отдельности. Ксантиген нарушает деятельность ключевых транскрипторных факторов адипогенеза – (PPAR)γ, CCAAT, (C/EBP) β, C/EBPδ и синтазы жирных кислот (FAS). Кроме того, Ксантиген стимулирует сигнальную функцию инсулина. Суммарно, Ксантиген подавляет дифференциацию адипоцитов и накопление липидов посредством множества связанных между собой механизмов, что обеспечивает устойчивость и эффективность лечения ожирения (рис.4).
+
Исследование Ch-S.Lai и соавторов (2012) показало, что возможными механизмами жироснижающего эффекта Ксантигена является мощное и дозо-зависимое подавление накопления липидов в адипоцитах, превышающее действие каждого из двух компонентов БАДа (фукоксантина и ГК) в отдельности. Ксантиген нарушает деятельность ключевых транскрипторных факторов адипогенеза – (PPAR)γ, CCAAT, (C/EBP) β, C/EBPδ и синтазы жирных кислот (FAS). Кроме того, Ксантиген стимулирует сигнальную функцию инсулина. Суммарно, Ксантиген подавляет дифференциацию адипоцитов и накопление липидов посредством множества связанных между собой механизмов, что обеспечивает устойчивость и эффективность лечения ожирения (рис.4).
 
[[Image:Omega_Ris_4.jpg|250px|thumb|right|Рис.4. Гипотетический механизм «жиросжигающего» действия Ксантигена. Объяснения в тексте. Из K.M. Choi и соавт.(2014).]]
 
[[Image:Omega_Ris_4.jpg|250px|thumb|right|Рис.4. Гипотетический механизм «жиросжигающего» действия Ксантигена. Объяснения в тексте. Из K.M. Choi и соавт.(2014).]]
В эксперименте было показано, что Ксантиген ослабляет эффект [[Высокожировая диета|высокожировой диеты]], вызывающей ожирение<ref>Choi K.M., Jeon Y.S., Kim W. et al. Xanthigen Attenuates High-fat Diet-induced Obesity through Down-regulation of PPARγ and Activation of the AMPK Pathway. Food Sci. Biotechnol., 2014, 23(3): 931-935.</ref>, способствует снижению веса и жировой массы, а ведущими механизмами защитного влияния этого БАДа являются: 1) угнетение экспрессии PPARγ в жировой ткани, что ведет с торможению дифференциации адипоцитов; 2) снижение уровней лептина в сыворотке крови и жировой ткани; 3) активация AMPK-сигнальных путей в жировой ткани (АМРК – важный регулятор липидного и энергетического обмена), что угнетает липогенез и синтез ЖК, но усиливает окисление ЖК и транспорт глюкозы (рис.5 и 6).
+
В эксперименте было показано, что Ксантиген ослабляет эффект высокожировой диеты, вызывающей ожирение (K.M. Choi и соавт., 2014), способствует снижению веса и жировой массы, а ведущими механизмами защитного влияния этого БАДа являются: 1) угнетение экспрессии PPARγ в жировой ткани, что ведет с торможению дифференциации адипоцитов; 2) снижение уровней лептина в сыворотке крови и жировой ткани; 3) активация AMPK-сигнальных путей в жировой ткани (АМРК – важный регулятор липидного и энергетического обмена), что угнетает липогенез и синтез ЖК, но усиливает окисление ЖК и транспорт глюкозы (рис.5 и 6).
 
[[Image:Omega_Ris_5.jpg|250px|thumb|right|Рис.5. Влияние Ксантигена в дозе 10 г на кг диеты в течение 11 недель на относительную экспрессию (разы, ось ординат) PPARγ (А) в жировой ткани и лептина (B) в сыворотке крови у мышей в трех группах: нормальная диета (ND), высокожировая диета (HFD) и сочетание высокожировой диеты с Ксантигеном (HFD+Xanthigen). Из K.M. Choi и соавт. (2014).]]   
 
[[Image:Omega_Ris_5.jpg|250px|thumb|right|Рис.5. Влияние Ксантигена в дозе 10 г на кг диеты в течение 11 недель на относительную экспрессию (разы, ось ординат) PPARγ (А) в жировой ткани и лептина (B) в сыворотке крови у мышей в трех группах: нормальная диета (ND), высокожировая диета (HFD) и сочетание высокожировой диеты с Ксантигеном (HFD+Xanthigen). Из K.M. Choi и соавт. (2014).]]   
 
[[Image:Omega_Ris_6.jpg|250px|thumb|right|Рис.6. Влияние Ксантигена в дозе 10 г на кг диеты в течение 11 недель на относительную экспрессию (разы, ось ординат) p-AMPKα и p-AMPKβ в жировой ткани у мышей в трех группах: нормальная диета (ND), высокожировая диета (HFD) и сочетание высокожировой диеты с Ксантигеном (HFD+Xanthigen). Из K.M. Choi и соавт. (2014).]]
 
[[Image:Omega_Ris_6.jpg|250px|thumb|right|Рис.6. Влияние Ксантигена в дозе 10 г на кг диеты в течение 11 недель на относительную экспрессию (разы, ось ординат) p-AMPKα и p-AMPKβ в жировой ткани у мышей в трех группах: нормальная диета (ND), высокожировая диета (HFD) и сочетание высокожировой диеты с Ксантигеном (HFD+Xanthigen). Из K.M. Choi и соавт. (2014).]]
Кроме того, в совсем свежем исследовании K-M.Kim и соавторов<ref>Kim K-M., Kim S-M., Cho D-Y. et al. The Effect of Xanthigen on the Expression of Brown Adipose Tissue Assessed by 18F-FDG PET. Yonsei Med.J., 2016, 57(4):1038-1041.</ref> показано, что Ксантиген по-разному изменяет энергетический и метаболический баланс в бурой (энергетический, расходный пул) и белой (резервный пул, депо) жировой ткани, усиливая процессы дифференцировки клеток бурого жира, и окислительные процессы в белом жире. По определению R.Randell<ref>Randell R. Factors affecting fat oxidation in exercise. A thesis submitted to The University of Birmingham. School of Sport and Exercise Sciences College of Life and Environmental Studies University of Birmingham, June 2013.</ref>, ''Ксантиген, экстракт зеленого чая, некоторые другие растительные регуляторы жирового обмена и их комбинации (табл. 2) в сочетании с физическими нагрузками являются наиболее эффективными средствами нутритивной стратегии снижения веса и лечения ожирения (уровень доказательности «В»)''.
+
Кроме того, в совсем свежем исследовании K-M.Kim и соавторов (2016) показано, что Ксантиген по-разному изменяет энергетический и метаболический баланс в бурой (энергетический, расходный пул) и белой (резервный пул, депо) жировой ткани, усиливая процессы дифференцировки клеток бурого жира, и окислительные процессы в белом жире. По определению R.Randell (2013), ''Ксантиген, экстракт зеленого чая, некоторые другие растительные регуляторы жирового обмена и их комбинации (табл. 2) в сочетании с физическими нагрузками являются наиболее эффективными средствами нутритивной стратегии снижения веса и лечения ожирения (уровень доказательности «В»)''.
 
 
 
=== Пост-тренировочные комплексы с ГК ===
 
=== Пост-тренировочные комплексы с ГК ===
МЗГ включено в ряд пост-тренировочных комплексов для ускоренного восстановления после физических нагрузок. Эти составы базируются на принципах, разработанных в Гарвардском институте,и обосновывают сочетанное применение пластических ([[протеин]]ы, [[аминокислоты]]), энергетических ([[углеводы]]) и каталитических (фармаконутриенты) компонентов восполнения потерь при [[Интенсивность физических нагрузок|интенсивных тренировках]]. Для примера, состав одного из таких комплексов: 35 г смеси (одна порция) содержит [[Изолят сывороточного протеина|изоляты whey-протеина]] и [[Гороховый протеин|белка гороха]], [[казеин]], [[ВСАА аминокислоты|ВСАА]] ([[лейцин]], [[валин]] и [[изолейцин]] в соотношении 2:1:1) в сумме 23 г; экстракт зерен граната (ГК – омега-5 ПНЖК) 650 мг; [[Кверцетин]] 300 мг. Сочетание изолятов белков животного и растительного происхождения с казеином обеспечивают равномерное поддержание уровней аминокислот в плазме крови в течение всего периода восстановления и их адекватный качественный состав. Задача ГК в составе смеси сводится к оптимизации расхода жиров в постнагрузочном периоде (максимальное их использование как источника энергии и подключение жировых депо к этому процессу). Подобные смеси применяются внутрь в 200 мл воды или сока, приготовление в шейкере) в течение 30 минут после тренировки.
+
МЗГ включено в ряд пост-тренировочных комплексов для ускоренного восстановления после физических нагрузок. Эти составы базируются на принципах, разработанных в Гарвардском институте,и обосновывают сочетанное применение пластических (протеины, аминокислоты), энергетических (углеводы) и каталитических (фармаконутриенты) компонентов восполнения потерь при интенсивных тренировках. Для примера, состав одного из таких комплексов: 35 г смеси (одна порция) содержит изоляты whey-протеина и белка гороха, казеин, ВСАА (лейцин, валин и изолейцин в соотношении 2:1:1) в сумме 23 г; экстракт зерен граната (ГК – омега-5 ПНЖК) 650 мг; Кверцетин 300 мг. Сочетание изолятов белков животного и растительного происхождения с казеином обеспечивают равномерное поддержание уровней аминокислот в плазме крови в течение всего периода восстановления и их адекватный качественный состав. Задача ГК в составе смеси сводится к оптимизации расхода жиров в постнагрузочном периоде (максимальное их использование как источника энергии и подключение жировых депо к этому процессу). Подобные смеси применяются внутрь в 200 мл воды или сока, приготовление в шейкере) в течение 30 минут после тренировки.
  
 
'''Таблица 2. Готовые комбинированные формы с ГК из масла зерен граната'''  
 
'''Таблица 2. Готовые комбинированные формы с ГК из масла зерен граната'''  
Строка 105: Строка 101:
 
== Экстракт граната с высоким содержанием нитратов (коммерческий продукт NITRO2GRANIT™) ==
 
== Экстракт граната с высоким содержанием нитратов (коммерческий продукт NITRO2GRANIT™) ==
 
   
 
   
'''NITRO2GRANIT™''' - комбинированный продукт, содержащий 50% полифенолов экстракта граната (ГЭ) и экстракт [[Свекла|свеклы]]. Целью создания данной комбинации являлось потенциальное увеличение эргогенного действия за счет сочетания полифенолов (повышение устойчивости к окислительному стрессу в процессе физической нагрузки, снижение мышечных повреждений и ускорение восстановления) и нитратов (снижение потребности в кислороде и увеличение выносливости, см. «[[Донаторы оксида азота: научный подход|Донаторы оксида азота]]»).
+
'''NITRO2GRANIT™''' - комбинированный продукт, содержащий 50% полифенолов экстракта граната (ГЭ) и экстракт [[Свекла|свеклы]]. Целью создания данной комбинации являлось потенциальное увеличение эргогенного действия за счет сочетания полифенолов (повышение устойчивости к окислительному стрессу в процессе физической нагрузки, снижение мышечных повреждений и ускорение восстановления) и нитратов (снижение потребности в кислороде и увеличение выносливости, см. главу «Донаторы оксида азота»).
 
 
В работе  M.N.Melvin и соавторов<ref>Melvin M.N., Trexler E.T., Roelofs E.J. The effects of pomegranate extract on blood flow, vessel diameter, and exercise tolerance. J.Int.Soc.Sports Nutr., 2014, 11(Suppl 1): P4.</ref> моделировалась ситуация с увеличением  потребности [[Скелетные мышцы|скелетной мускулатуры]] в кислороде и энергетических субстратах в процессе физической нагрузки. Комбинированная [[Пищевые добавки: научный подход|пищевая добавка]] Nitro2Granit (полифенолы ГС и нитраты свеклы) потенциально может увеличивать продукцию окиси азота и повышать эффективность тренировки. Авторами проведено рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование эффектов однократного влияния комбинированной пищевой добавки на кровоток, диаметр сосудов и физическую готовность у регулярно тренирующихся лиц. 19 мужчин и женщин (средний возраст 22,2 года, рост 174,8 см, масса тела 71,9 кг) проходили тест на беговой дорожке с нагрузкой до полного истощения (до добровольного отказа) для определения максимального потребления кислорода и пика скорости движения (PV). Через 24-48 часов участники были рандомизированы в две группы: 1) 1000 мг NITRO2GRANIT™; 2) плацебо. Регистрировались исходные показатели кровотока в плечевой артерии и через 30 минут после приема пищевых добавок, а также традиционные функциональные показатели в процессе тестирования на беговой дорожке. Через 7-10 дней «отмывочного» периода те же группы менялись ролями в получении либо плацебо, либо экстракт граната (перекрестный характер исследования). В результате, в группе с ГЭ+экстракт свеклы через 30 минут отмечено значительное дополнительное (плюс к влиянию самой физической нагрузки) увеличение кровотока в плечевой артерии и расширение сосудов по сравнению с плацебо-группой. Существенно улучшались функциональные показатели прохождения теста, увеличивалось время наступления истощения. Авторы делают заключение, что однократный прием ГЭ в дозе 1 г (с повышенным содержанием нитратов в виде комплекса с экстрактом свеклы в качестве донатора оксида азота) за 30 минут до тренировки является эффективным способом дополнительного увеличения кровотока в работающих мышцах (расширение сосудов), и улучшения переносимости физических нагрузок. ГЭ с повышенным содержанием нитратов оказывает отчетливый немедленный эргогенный эффект при субмаксимальной беговой нагрузке за счет повышения кровотока.
+
В работе  M.N.Melvin и соавторов (2014) моделировалась ситуация с увеличением  потребности скелетной мускулатуры в кислороде и энергетических субстратах в процессе физической нагрузки. Комбинированная пищевая добавка Nitro2Granit (полифенолы ГС и нитраты свеклы) потенциально может увеличивать продукцию окиси азота и повышать эффективность тренировки. Авторами проведено рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование эффектов однократного влияния комбинированной пищевой добавки на кровоток, диаметр сосудов и физическую готовность у регулярно тренирующихся лиц. 19 мужчин и женщин (средний возраст 22,2 года, рост 174,8 см, масса тела 71,9 кг) проходили тест на беговой дорожке с нагрузкой до полного истощения (до добровольного отказа) для определения максимального потребления кислорода и пика скорости движения (PV). Через 24-48 часов участники были рандомизированы в две группы: 1) 1000 мг NITRO2GRANIT™; 2) плацебо. Регистрировались исходные показатели кровотока в плечевой артерии и через 30 минут после приема пищевых добавок, а также традиционные функциональные показатели в процессе тестирования на беговой дорожке. Через 7-10 дней «отмывочного» периода те же группы менялись ролями в получении либо плацебо, либо экстракт граната (перекрестный характер исследования). В результате, в группе с ГЭ+экстракт свеклы через 30 минут отмечено значительное дополнительное (плюс к влиянию самой физической нагрузки) увеличение кровотока в плечевой артерии и расширение сосудов по сравнению с плацебо-группой. Существенно улучшались функциональные показатели прохождения теста, увеличивалось время наступления истощения. Авторы делают заключение, что однократный прием ГЭ в дозе 1 г (с повышенным содержанием нитратов в виде комплекса с экстрактом свеклы в качестве донатора оксида азота) за 30 минут до тренировки является эффективным способом дополнительного увеличения кровотока в работающих мышцах (расширение сосудов), и улучшения переносимости физических нагрузок. ГЭ с повышенным содержанием нитратов оказывает отчетливый немедленный эргогенный эффект при субмаксимальной беговой нагрузке за счет повышения кровотока.
 
 
В работе E.J.Roelofs и соавторов<ref>Roelofs E.J., Hirsch K.R., Trexler E.T. et al. The effects of pomegranate extract on anaerobic exercise performance & cardiovascular responses. J.Intern.Soc.Sports Nutr., 2015, 12(Suppl 1):P56.</ref>, опубликованной в [[Журнал интернационального общества спортивного питания|журнале Международного Общества Спортивного Питания]], исследовался эффект однократного применения  ГЭ на показатели [[Анаэробные упражнения|анаэробных упражнений]], сосудистый кровоток и расширение сосудов при нагрузке (FMD), а также насыщение крови кислородом (SP0<sub>2</sub>), частоту сердечных сокращений (HR), и кровяное давление (BP). 19 физически активных мужчин (средний возраст 22,1 ± 1,9 года, рост 170,4 ± 12,4 см, вес 68,7 ± 15,9 кг) приняли участие в рандомизированном двойном-слепом плацебо-контролируемом перекрестном исследовании с разделением на две группы: 1) 1000 мг ГЭ (True Pomegranate Extract, Stiebs Nature Elevated, Madera, CA) или 2) плацебо (PL; 95% мальтодекстрин) в капсулах. Прием добавок проводился за 30 мин до спринт-теста с определением пика и средней мощности на велоэргометре (10 6-секундных максимальных спринта с нагрузкой 65 г/кг веса тела с 30-секундным пассивным восстановлением). В работе использовался неинвазивный метод FMD - Flow Mediated Vasodilatation (потоко-опосредованная вазодилатация) плечевой артерии для оценки сосудистых параметров, а также регистрация ЧСС, насыщения крови кислородом и артериальное давление. Все параметры оценивались до и через 30 минут после приема ГЭ, а также перед физической нагрузкой, сразу после нее и через 30 минут.  Через 7 дней «отмывочного» периода те же участники проходили тест с другим БАДом (плацебо или ГЭ). В группе, получавшей ГЭ, пик мощности был достоверно выше во время 5-го спринта по сравнению с плацебо с сохранением такой тенденции к 7-ому спринту. Параллельно под влиянием ГЭ отмечалось большее увеличение дилятации  сосудов и усиление кровотока по сравнению с плацебо.  Отличий в изменениях насыщения крови кислородом, частоты сердечных сокращений и артериального давления между группами не наблюдалось. Результаты показывают потенциальную возможность улучшения физической формы тренирующихся лиц (эргогенный эффект) при однократном приеме ГЭ в форме капсул в дозе 1000 мг за 30 минут до нагрузки за счет увеличения доставки кислорода и субстратов к работающим скелетным мышцам. ГЭ может включаться в состав пред-тренировочных комплексов вместе с другими эргогенными веществами с иным механизмом действия.  
+
В работе E.J.Roelofs и соавторов (2015), опубликованной в журнале Международного Общества Спортивного Питания, исследовался эффект однократного применения  ГЭ на показатели анаэробных упражнений, сосудистый кровоток и расширение сосудов при нагрузке (FMD), а также насыщение крови кислородом (SP02), частоту сердечных сокращений (HR), и кровяное давление (BP). 19 физически активных мужчин (средний возраст 22,1 ± 1,9 года, рост 170,4 ± 12,4 см, вес 68,7 ± 15,9 кг) приняли участие в рандомизированном двойном-слепом плацебо-контролируемом перекрестном исследовании с разделением на две группы: 1) 1000 мг ГЭ (True Pomegranate Extract, Stiebs Nature Elevated, Madera, CA) или 2) плацебо (PL; 95% мальтодекстрин) в капсулах. Прием добавок проводился за 30 мин до спринт-теста с определением пика и средней мощности на велоэргометре (10 6-секундных максимальных спринта с нагрузкой 65 г/кг веса тела с 30-секундным пассивным восстановлением). В работе использовался неинвазивный метод FMD - Flow Mediated Vasodilatation (потоко-опосредованная вазодилатация) плечевой артерии для оценки сосудистых параметров, а также регистрация ЧСС, насыщения крови кислородом и артериальное давление. Все параметры оценивались до и через 30 минут после приема ГЭ, а также перед физической нагрузкой, сразу после нее и через 30 минут.  Через 7 дней «отмывочного» периода те же участники проходили тест с другим БАДом (плацебо или ГЭ). В группе, получавшей ГЭ, пик мощности был достоверно выше во время 5-го спринта по сравнению с плацебо с сохранением такой тенденции к 7-ому спринту. Параллельно под влиянием ГЭ отмечалось большее увеличение дилятации  сосудов и усиление кровотока по сравнению с плацебо.  Отличий в изменениях насыщения крови кислородом, частоты сердечных сокращений и артериального давления между группами не наблюдалось. Результаты показывают потенциальную возможность улучшения физической формы тренирующихся лиц (эргогенный эффект) при однократном приеме ГЭ в форме капсул в дозе 1000 мг за 30 минут до нагрузки за счет увеличения доставки кислорода и субстратов к работающим скелетным мышцам. ГЭ может включаться в состав пред-тренировочных комплексов вместе с другими эргогенными веществами с иным механизмом действия.  
 
 
ГЭ с высоким содержанием нитратов в составе пред-тренировочных комплексов в Кроссфите. В работе J.J.Outlaw и соавторов<ref>Outlaw J.J., Wilborn C.D., Smith-Ryan A.E. et al. Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals. SpringerPlus, 2014, 3:369-376.</ref> произведена оценка эффективности [[Белково-углеводные смеси|белково-углеводной смеси]] (БУС) с включением ГЭ (БУС+ГЭ), на показатели физической готовности тренирующихся в [[Кроссфит|КроссФит]]е лиц, при ее приеме до и после физической нагрузки. Исследовались изменения состава тела, показатели выполнения специфических для [[Кроссфит: упражнения|КроссФита упражнений]], [[Аэробные способности|аэробную]] и [[Анаэробные лактатные способности|анаэробную способность]] постоянно тренирующихся лиц после 6 недель приема БУС+ГЭ до и после высокоинтенсивной разноплановой физической нагрузки. В рандомизированном открытом 6-недельном исследовании приняли участие 29 человек (13 мужчин и 16 женщин, средний возраст 32 года, вес 79 кг, % жировая масса 22%). Участники регулярно тренировались по программе КроссФита не менее трех раз в неделю в течение полугода, не имели проблем со здоровьем, и не принимали каких-либо пищевых добавок в последние три месяца до исследования. Они были рандомизированы в две группы: 1) БУС+ГЭ и 2) плацебо. Предтренировочная порция пищевой добавки (БУС+ГЭ), принимаемая за 30 минут до начала каждой тренировочной сессии, включала: 19 г БУС (Pursuit Rx Pre-Workout, Dymatize Nutrition, Dallas, TX); ГЭ (NITRO2GRANIT™); стандартизированные экстракты вишни, свеклы и зеленого чая (AssuriTEA™, Kemin, Dubuque IA); экстракт черного чая (InnovaTEA® , Kemin, Dubuque IA). Эта же БУС (Dymatize Nutrition), состоящая из whey-протеина (20 г) и углеводов (40 г) принималась участниками исследования сразу же после тренировочной сессии. Дозировки для женщин и мужчин различались в два раза: женщины принимали две мерные ложки смеси (составляют одну порцию из 20 г белка и 40 г углеводов), разведенные в 250 мл воды; мужчины – четыре мерные ложки смеси (составляют две порции из 40 г белка и 80 г углеводов), разведенные в 500 мл воды. После каждой КроссФит-сессии участники заполняли опросники для оценки субъективных ощущений тяжести нагрузки (RPE) и уровня отсроченной болезненности мышц (DOMS). В конце каждой недели в группе с пищевыми добавками дополнительно заполнялся опросный лист для оценки возможных побочных эффектов принимаемых БАДов. Тестирование участников включало две нагрузочные сессии в течение дня – WOD1 и WOD2. WOD1 (время выполнения в сек) включала: 500 метров гребли на тренажере (row), 40 бросков набивного мяча в цель (40 wall balls), 30 отжиманий (push-ups), 20 запрыгиваний на ящик (box jumps), и 10 выбросов штанги с максимальной быстротой. После 20 минутного отдыха выполнялась WOD2 (регистрировалось количество выполненных повторов): бег на 800 метров (run “buy in”) с последующим максимальным количеством из 5-и Бёрли, 10-и гиревых махов (Kettlebell swings) и 15-и «воздушных» приседаний (air squats) в течение 15 минут. До (исходные данные) и после всех нагрузок выполнялись стандартные тесты на физическое состояние на велотренажере (Wingate-тест). Полученные результаты свидетельствуют об отчетливом эргогенном влиянии стандартной комбинированной добавки белково-углеводной смеси, обогащенной омега-5 ПНЖК-полифенолами и донаторами оксида азота, на показатели физической готовности в КроссФите (увеличение мощности и поддержание VO<sub>2</sub>max).
+
ГЭ с высоким содержанием нитратов в составе пред-тренировочных комплексов в Кроссфите. В работе J.J.Outlaw и соавторов (2014) произведена оценка эффективности белково-углеводной смеси (БУС) с включением ГЭ (БУС+ГЭ), на показатели физической готовности тренирующихся в КроссФите лиц, при ее приеме до и после физической нагрузки. Исследовались изменения состава тела, показатели выполнения специфических для КроссФита упражнений, аэробную и анаэробную способность постоянно тренирующихся лиц после 6 недель приема БУС+ГЭ до и после высокоинтенсивной разноплановой физической нагрузки. В рандомизированном открытом 6-недельном исследовании приняли участие 29 человек (13 мужчин и 16 женщин, средний возраст 32 года, вес 79 кг, % жировая масса 22%). Участники регулярно тренировались по программе КроссФита не менее трех раз в неделю в течение полугода, не имели проблем со здоровьем, и не принимали каких-либо пищевых добавок в последние три месяца до исследования. Они были рандомизированы в две группы: 1) БУС+ГЭ и 2) плацебо. Предтренировочная порция пищевой добавки (БУС+ГЭ), принимаемая за 30 минут до начала каждой тренировочной сессии, включала: 19 г БУС (Pursuit Rx Pre-Workout, Dymatize Nutrition, Dallas, TX); ГЭ (NITRO2GRANIT™); стандартизированные экстракты вишни, свеклы и зеленого чая (AssuriTEA™, Kemin, Dubuque IA); экстракт черного чая (InnovaTEA® , Kemin, Dubuque IA). Эта же БУС (Dymatize Nutrition), состоящая из whey-протеина (20 г) и углеводов (40 г) принималась участниками исследования сразу же после тренировочной сессии. Дозировки для женщин и мужчин различались в два раза: женщины принимали две мерные ложки смеси (составляют одну порцию из 20 г белка и 40 г углеводов), разведенные в 250 мл воды; мужчины – четыре мерные ложки смеси (составляют две порции из 40 г белка и 80 г углеводов), разведенные в 500 мл воды. После каждой КроссФит-сессии участники заполняли опросники для оценки субъективных ощущений тяжести нагрузки (RPE) и уровня отсроченной болезненности мышц (DOMS). В конце каждой недели в группе с пищевыми добавками дополнительно заполнялся опросный лист для оценки возможных побочных эффектов принимаемых БАДов. Тестирование участников включало две нагрузочные сессии в течение дня – WOD1 и WOD2. WOD1 (время выполнения в сек) включала: 500 метров гребли на тренажере (row), 40 бросков набивного мяча в цель (40 wall balls), 30 отжиманий (push-ups), 20 запрыгиваний на ящик (box jumps), и 10 выбросов штанги с максимальной быстротой. После 20 минутного отдыха выполнялась WOD2 (регистрировалось количество выполненных повторов): бег на 800 метров (run “buy in”) с последующим максимальным количеством из 5-и Бёрли, 10-и гиревых махов (Kettlebell swings) и 15-и «воздушных» приседаний (air squats) в течение 15 минут. До (исходные данные) и после всех нагрузок выполнялись стандартные тесты на физическое состояние на велотренажере (Wingate-тест). Полученные результаты свидетельствуют об отчетливом эргогенном влиянии стандартной комбинированной добавки белково-углеводной смеси, обогащенной омега-5 ПНЖК-полифенолами и донаторами оксида азота, на показатели физической готовности в КроссФите (увеличение мощности и поддержание VO2max).
  
'''Таблица.2. Примеры готовых коммерческих форм БАДов из различных частей граната'''
+
'''Таблица.5. Примеры готовых коммерческих форм БАДов из различных частей граната'''
  
 
{| class="wikitable"
 
{| class="wikitable"
Строка 155: Строка 151:
 
*[[Омега-7|Омега-7 жирные кислоты: научный обзор]]
 
*[[Омега-7|Омега-7 жирные кислоты: научный обзор]]
  
== Источники ==
+
== Литература ==
<references/>
 
  
== Литература ==
+
*Abidov M., Ramazanov Z., Seifulla R., Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes.Metab., 2010, 12(1):72-81
 
*Ali K., Che-Man Y.B., Roberts T.H.. Physico-chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Tech., 2014, 116:553–562.
 
*Ali K., Che-Man Y.B., Roberts T.H.. Physico-chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Tech., 2014, 116:553–562.
 
*Arao K., Wang Y., Inoue N., Hirata J., Cha J., Nagao K., Yanagita T. Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis., 2004, 3: 24.  
 
*Arao K., Wang Y., Inoue N., Hirata J., Cha J., Nagao K., Yanagita T. Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis., 2004, 3: 24.  
 +
*Aruna P., Venkataramanamma D., Kumar Singh A., Singh, R.P. Health Benefits of Punicic Acid: A Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(1): 16-27.
 +
*Boroushaki M.T., Mollazadeh H., Afshari R. Pomegranate seed oil: A comprehensive review on its therapeutic effects. IJPSR, 2016, 7(2): 430-442.
 +
*Caligiani A., Bonzanini F., Palla G. et al. Characterization of a potential nutraceutical ingredient: Pomegranate (Punica granatum L.) seed oil unsaponifiable fraction. Plant Foods for Human Nutrition, 2010, 65: 277-283.
 +
*Choi K.M., Jeon Y.S., Kim W. et al. Xanthigen Attenuates High-fat Diet-induced Obesity through Down-regulation of PPARγ and Activation of the AMPK Pathway. Food Sci. Biotechnol., 2014, 23(3): 931-935.
 
*Dadashi S., Mousazadeh M., Emam-Djomeh Z., Mousavi S.M.. Pomegranate (Punica granatum L.) seed: a comparative study on biochemical composition and oil physicochemical characteristics, Biochemical composition of pomegranate seed oil. Int. J. Adv. Biol. Biomed. Res. 2013, 1:351–363.
 
*Dadashi S., Mousazadeh M., Emam-Djomeh Z., Mousavi S.M.. Pomegranate (Punica granatum L.) seed: a comparative study on biochemical composition and oil physicochemical characteristics, Biochemical composition of pomegranate seed oil. Int. J. Adv. Biol. Biomed. Res. 2013, 1:351–363.
 +
*De Melo I.L.P., de Carvalho E.B.T. et al. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Science and Technology, 2016, 36(1): 132-139.
 +
*De Melo I.L.P., de Carvalho E.B.T. et al. Pomegranate Seed Oil (Punica Granatum L.): A Source of Punicic Acid (Conjugated α-Linolenic Acid). J.Human Nutrition and Food Science, 2014, 2(1): 1024-1035.
 
*Elbandy M.A., Ashoush I.S.. Phytochemicals in pomegranate seeds and their effect as hypolipidemic agent in hypercholesterolemic rats. World J. Dairy Food Sci., 2012, 7:85–92.
 
*Elbandy M.A., Ashoush I.S.. Phytochemicals in pomegranate seeds and their effect as hypolipidemic agent in hypercholesterolemic rats. World J. Dairy Food Sci., 2012, 7:85–92.
 +
*Elfalleh, W., Ying, M., Nasri, N., Sheng-Hua, H., Guasmi, F.,  Ferchichi, A. Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds. International Journal of Food Sciences and Nutrition, 2011, 62(3), 200-206.
 
*Guangmin L., Xiang X., Qinfeng H., Yanxiang G. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT - Food Sci. Tech., 2009, 42:1491–1495.
 
*Guangmin L., Xiang X., Qinfeng H., Yanxiang G. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT - Food Sci. Tech., 2009, 42:1491–1495.
 
*Habibnia M., Ghavami M., Ansaripour M., Vosough S. Chemical evaluation of oils extracted from five different varieties of Iranian pomegranate seeds. J. Food Biosci. Tech., 2012, 2:35–40.
 
*Habibnia M., Ghavami M., Ansaripour M., Vosough S. Chemical evaluation of oils extracted from five different varieties of Iranian pomegranate seeds. J. Food Biosci. Tech., 2012, 2:35–40.
 
*Hennessy A.A., Ross R.P., Devery R., Stanton C. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids. 2011, 46(2):105-119.
 
*Hennessy A.A., Ross R.P., Devery R., Stanton C. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids. 2011, 46(2):105-119.
 +
*Hontecillas R., O’Shea M., Einerhand A. et al. Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J. Am.Coll.Nutr., 2009, 28: 184-195.
 
*Iwabuchi M., Kohno M.J., Imamura J. Delta12-oleate desaturase-related enzymes associated with formation of conjugated trans- delta11, cis- delta13 double bonds. J. Biol. Chem., 2003, 278:4603–4610.
 
*Iwabuchi M., Kohno M.J., Imamura J. Delta12-oleate desaturase-related enzymes associated with formation of conjugated trans- delta11, cis- delta13 double bonds. J. Biol. Chem., 2003, 278:4603–4610.
 +
*Jasuja N.D., Saxena R., Chandra S., Sharma S. Pharmacological characterization and beneficial uses of Punica Granatum. Asian J. Plant Sci., 2012, 11(6): 251-267.
 +
*Kim K-M., Kim S-M., Cho D-Y. et al. The Effect of Xanthigen on the Expression of Brown
 +
Adipose Tissue Assessed by 18F-FDG PET. Yonsei Med.J., 2016, 57(4):1038-1041.
 +
*Lai Ch-S., Tsai M.L., Badmaev V. et al. Xanthigen Suppresses Preadipocyte Differentiation and Adipogenesis through Down-regulation of PPARγ and C/EBPs and Modulation of SIRT-1, AMPK, and FoxO Pathways. J. Agric. Food Chem., 2012, 60 (4):1094–1101.
 
*Lansky E., Harrison G., Froom P., Jiang W. Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel". Invest. New Drugs, 2005, 23 (2): 121–122.
 
*Lansky E., Harrison G., Froom P., Jiang W. Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel". Invest. New Drugs, 2005, 23 (2): 121–122.
 
*Lesot P., Serhan Z., Billault I.. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters. Anal Bioana.l Chem., 2011, 399:1187–1200.
 
*Lesot P., Serhan Z., Billault I.. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters. Anal Bioana.l Chem., 2011, 399:1187–1200.
 
*May P. Supercritical pomegranate seed extract helps maintain good health. Innovative Food Tech., 2014, 62:34–36.
 
*May P. Supercritical pomegranate seed extract helps maintain good health. Innovative Food Tech., 2014, 62:34–36.
 +
*McFarlin B.K., Strohacker K.A., Kueht M.L. Pomegranate seed oil consumption during a period of high-fat feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br.J.Nutr., 2009; 102:54-59.
 +
*Melvin M.N., Trexler E.T., Roelofs E.J. The effects of pomegranate extract on blood flow, vessel diameter, and exercise tolerance. J.Int.Soc.Sports Nutr., 2014, 11(Suppl 1): P4.
 
*Miranda J., Arias N., Fernández-Quintela A., del Puy Portillo M. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention? Endocrinol. Nutr. 2014, 61(4):209-219.
 
*Miranda J., Arias N., Fernández-Quintela A., del Puy Portillo M. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention? Endocrinol. Nutr. 2014, 61(4):209-219.
 +
*Mirmiran P., Fazeli M.R., Asghari G. et al. Effect of pomegranate seed oil on hyperlipidaemic subjects: a double-blind placebo-controlled clinical trial. Br.J.Nutr., 2010, 104: 402-406.
 +
*Mirzaee S. Studying seed and oil physicochemical characteristics of four Iranian pomegranate (Punica granatum L.) varieties. Int.J.BioSci., 2014, 4(8): 78-86.
 +
*Outlaw J.J., Wilborn C.D., Smith-Ryan A.E. et al. Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals. SpringerPlus, 2014, 3:369-376.
 +
*Randell R. Factors affecting fat oxidation in exercise. A thesis submitted to The University of Birmingham. School of Sport and Exercise Sciences College of Life and Environmental Studies University of Birmingham, June 2013.
 +
*Roelofs E.J., Hirsch K.R., Trexler E.T. et al. The effects of pomegranate extract on anaerobic
 +
exercise performance & cardiovascular responses. J.Intern.Soc.Sports Nutr., 2015, 12(Suppl 1):P56.
 
*Tsuzuki T., Kawakami Y., Abe R. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J. Nutr. 2006, 136 (8): 2153–2159.  
 
*Tsuzuki T., Kawakami Y., Abe R. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J. Nutr. 2006, 136 (8): 2153–2159.  
 
*Viladomiu M.,  Hontecillas R.,  Lu P., Bassaganya-Riera J. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents. Hindawi Publishing Corporation, Evidence-Based Complementary and Alternative Medicine. v. 2013, Article ID 789764, 18 pages
 
*Viladomiu M.,  Hontecillas R.,  Lu P., Bassaganya-Riera J. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents. Hindawi Publishing Corporation, Evidence-Based Complementary and Alternative Medicine. v. 2013, Article ID 789764, 18 pages
 +
*Yang L., Leung K.Y., Cao Y. et al. Alphalinolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br.J.Nutr., 2005, 93: 433-438.
 +
*Yuan G.F., Sinclair A.J., Li D. Incorporation and metabolismof punicic acid in healthy young humans. Mol. Nutr. Food Res., 2009, 53, 1336 – 1342.
 
*Yuan G.F., Chen X.E., Li D. Conjugated linolenic acids and their bioactivities: a review. Food Funct., 2014, 25, 5(7):1360-1368.  
 
*Yuan G.F., Chen X.E., Li D. Conjugated linolenic acids and their bioactivities: a review. Food Funct., 2014, 25, 5(7):1360-1368.  
  
 
[[Категория:Спортивное_питание]]
 
[[Категория:Спортивное_питание]]

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблон, используемый на этой странице: