1759
правок
Спорт-вики — википедия научного бодибилдинга
Изменения
Нет описания правки
'''Авторы''': д.м.н. [[Александр Дмитриев]], врач-эндокринолог [[Участник:Алексей_Калинчев|Алексей Калинчев]]
В последние годы в мире возрос интерес к [[Бета-аланин|бета-Аланин]]у (β-Аланин, β-Alanine, БА) как биологически активной [[Аминокислоты|аминокислоте]], применяемой в качестве фармаконутриента с целью повышения физической готовности как [[Бета-аланин в спорте|спортсменов]], так и обычных лиц, занимающихся физкультурой или подверженных повышенным физическим нагрузкам. В период с 2007 по 2015 год выполнено большое количество исследований у разных категорий лиц: профессиональных спортсменов, военных, обычных тренированных и нетренированных лиц, - для определения эффективности БАбета-аланина, дозировок и схем использования. На основании этих работ сформулированы рекомендации для однократного (острого) и курсового применения БАβ-аланина, сочетания с другими макро-, микро- и фармаконутриентами. В то же время, в отечественной литературе крайне мало работ, посвященных данному вопросу, что затрудняет практическое применение БАβ-аланина. Данный обзор предназначен для восполнения пробела в этом плане и создания основы для будущих российских рекомендаций.
=== Структура и физико-химические свойства β-Аланина (БА) ===
[[Image:Alanin9.jpg|250px|thumb|right|Структура Beta-Alanine (Бета-Аланин) и dl-Alpha-Alanine (dl-Альфа-Аланин)]]
'''Бета-Аланин''' (''3-аминопропионовая кислота''; ''бета-аминопропионовая кислота''; ''3-Aminopropionic acid''; ''Beta-Aminopropionic acid'') имеет молекулярный вес 89,1 г/моль, чрезвычайно высокую растворимость в воде 545 г/л (при 25оС). Растворимость в воде L-Аланина (альфа-Аланина) при той же температуре - 166 г/л.
Альфа- и бета- Аланин – изомеры, имеют одинаковую формулу '''С3Н7NO2''', но молекулярная структура у них разная. У альфа-Аланина амидная группа прикреплена к центральному углеродному атому, в то время как у бета-Аланина – к концевому углеродному атому. Это обусловливает различные химические свойства. В частности, температура плавления альфа-Аланина – 314оС314°С, бета-Аланина – 196оС196°С.
=== Экзогенное введение β-Аланина и метаболические процессы в организме ===
==== Фармакокинетика ====
В работе R.C.Harris и соавторов <ref name="Harris">Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30(20063) :279–289.</ref> на 28 здоровых молодых мужчинах (возраст 33,5±9,9 года; вес 80,2±17,1 кг) исследовалась динамика концентрации БА бета-аланина в плазме крови после перорального его введения в нескольких вариантах. *'''Исследование 1. Однократное введение БАбета-аланина''' (n=6): A) БА в виде дипептида с гистидином [[гистидин]]ом (эквивалентно 40 мг/кг веса тела) в курином бульоне; B) 10 мг/кг веса тела, C) 20 мг/кг веса тела и D) 40 мг/кг веса тела в виде препарата Карнозин (CarnoSyn, NAI, USA, бета-Аланин-L-Гистидин). *'''Исследование 2. Двухнедельное введение БАбета-аланина''' (n=6) в дозе 10 мг/кг веса тела 3 раза в день (три приема БА с 9.00 утра с интервалом 3 часа). *'''Исследование 3. Четырехнедельное введение БА бета-аланина или Карнозина''' (n=16) 4 раза в день по 800 мг БА или плацебо для оценки влияния хронического введения БА на биохимические и гематологические показатели крови.
[[Image:Alanin1.jpg|250px|thumb|right|Рис.1. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения в дозах 10 (белые кружки), 20 (черные треугольники) и 40 (белые ромбы) мг/кг. (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
'''В исследовании 1''' с однократным введением различных доз БА бета-аланина выявлено, что доза 40 мг/кг БА β-аланина вызывает побочные эффекты в виде покраснения и покалывания, которые развиваются через 20 мин после перорального применения и продолжаются в течение 1 часа, после чего бесследно исчезают. Эти проявления возникают первично на ушах, лбе, коже черепа, и распространяются далее на нос, руки, спину и ягодицы. Аналогичные, но гораздо менее интенсивные и кратковременные проявления, отмечены и в дозе 20 мг/кг веса тела, и достаточно редко – в дозе 10 мг/кг (ориентировочная фиксированная средняя доза 800 мг на прием). Пики концентраций БА бета-аланина (рис.1) для всех исследуемых доз наблюдались в интервале 30-40 минут, при этом максимальная концентрация БА β-аланина в плазме отмечалась в дозе 40 мг/кг (833,5±42,8 мкмол/л на 40-ой минуте), что в 2,2 раза превышает максимальную концентрацию в дозе 20 мг/кг. Эффект дозы 10 мг/кг был очень мал. Затем концентрация БА в плазме быстро снижается в течение часа в дозе 20 мг/кг, и 1,5-2 часов – в дозе 40 мг/кг. Время полужизни (Т1Т<sub>1/2</sub>) для всех введенных доз составляет около 25 минут. Результаты показали, что имеются существенные различия в абсорбции и динамике содержания БА бета-аланина в плазме между пероральным введением БА бета-аланина в чистом виде или в растворе куриного бульона (рис.2).
[[Image:Alanin2.jpg|250px|thumb|right|Рис.2. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения БА в чистом виде в дозе 40 мг/кг (белые ромбы), и в такой же дозе в составе куриного бульона (черные квадраты). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
Из графиков видно, что куриный бульон замедляет всасывание БАбета-аланина, снижает пик его концентрации в плазме крови, но пролонгирует время повышения концентрации. Так, пик концентрации в плазме при введении БА бета-аланина в составе куриного бульона примерно в два раза ниже, чем при введении БА бета-аланина в чистом виде (427,9±66,1 мкмол/л на 90-ой минуте, и 833,5±42,8 мкмол/л на 40-ой минуте, соответственно).
В исследовании 1 оценивалась также потеря введенного перорально БА бета-аланин с мочой в зависимости от дозы. Потери составили 0,6±0,09%, 1,5±0,4% и 3,6±0,5% для доз 10, 20 и 40 мг/кг, соответственно.
[[Image:Alanin3.jpg|250px|thumb|right|Рис.3. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после трехкратного перорального введения БА (с интервалом в три часа) в дозе 10 мг/кг в первый (черные треугольники) и в 15-й день (белые ромбы). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.]]
'''В исследовании 2''' с двухнедельным введением БА бета-аланина в дозе 10 мг/кг веса тела 3 раза в день (три приема БА бета-аланина с 9.00 утра с равными интервалами в 3 часа) и примерной разовой дозой 800 мг выявлено (рис.3), что концентрация БА бета-аланина в плазме после каждого приема препарата успевала вернуться к исходным значениям (через 3 часа) перед следующим приемом. Побочные эффекты, характерные для более высоких доз и, частично, для данной дозы при первом применении, при повторных приемах уже не проявлялись. Пик концентрации БА бета-аланина в плазме после приема дозы 10 мг/кг составлял такую же величину, что и в исследовании 1.
'''В исследовании 3''' с 4-х недельным введением БА бета-аланина (4 раза в день по 800 мг, т.е. примерно 10 мг/кг веса) не выявлено каких-либо изменений биохимических и гематологических показателей в плазме крови, а также проявлений побочных эффектов. Параллельно в течение 4-х недель приема препарата происходило нарастание содержания карнозина в мышечной ткани с исходных 22,7±1,1 ммол/кг/дм до 33,4±4,0 ммол/кг/дм к концу 4-ой недели (в среднем +47%). Это расценивается в качестве положительного эффекта в плане регуляции рН [[Мышечная клетка|мышечных клеток]], обеспечения нормального перехода мышц из состояния отдыха в рабочее (тренировочное) состояние, и наоборот, а также снижения лактата[[лактат]]а.
В связи с выявленным снижением выраженности и частоты побочных эффектов БА бета-аланина при замедлении всасывания в кишечнике, были созданы ретардные формы с постепенным высвобождением БА бета-аланина (таблетки, порошки). Изучению фармакокинетики и связанных побочных эффектов одной из таких форм БА бета-аланина в виде таблеток (slow-release - SR) c постепенным выделением БА β-аланина посвящена работа J.Decombaz и соавторов (<ref>Decombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release b-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012), 43:67–76.</ref>. В рандомизированном одиночном-слепом исследовании на 11 здоровых добровольцах сравнивались основные фармакокинетические параметры однократного утреннего введения обычного водного раствора БА бета-аланина и ретардных таблеток в дозе 1,6 г (табл.1).[[Image:Alanin10.jpg|250px|thumb|right|Таблица 1. Сравнительный фармакокинетический анализ однократного болюсного введения двух пероральных форм БА бета-аланина (быстрое и медленное высвобождение активного вещества). Примечания: Сmax (мкмол/л) – максимальная (пик) концентрация БА бета-аланина в плазме крови; Тmax (мин) – время достижения максимальной концентрации в плазме крови; AUC (мкмол/л/час) – площадь под кривой концентрация/время; Ka (мин) – константа скорости абсорбции; Tlog (мин) – время первого появления БА в плазме; Т1/2 (мин) – время полужизни БА. TABa – таблетки с замедленным высвобождением БА; REFb – водный раствор БА сравнения (референтный). По J.Decombaz и соавт. (2012).]]Как видно из таблицы 1, величина пика концентрации (Сmax) при приеме ретардных таблеток была примерно в три раза ниже, чем в случае водного раствора, а время его достижения (Тmax) – в два раза дольше (1 час против 0,5 часа). В то же время не выявлено различий в площадях под кривыми «концентрация/время», снижались потери БА β-аланина с мочой (202 против 663 мкмол, Р<0,0001) и повышалось удержание БА бета-аланина в организме (98.9% против 96.3%, Р<0.001). Побочные эффекты, описанные ранее как покраснение и покалывание в определенных участках кожи, и соответствующие по времени максимуму концентрации БА β-аланина в плазме крови, были значительно менее выражены при приеме ретардных таблеток (Р<0,001), а по частоте возникновения приближались к эффекту плацебо. Таким образом, ''применение ретардных форм, обеспечивающих замедленное высвобождение БА бета-аланина в кишечнике, позволяет избежать побочных эффектов неретардированных форм БА бета-аланина при сохранении величины основного показателя (для хронического применения вещества) – площади под кривой «концентрация-время»''. Эти факторы обеспечивают, по крайней мере для тех спортсменов, которые болезненно реагируют на покраснение кожи и парестезии при применении повышенных доз БАбета-аланина, несомненные преимущества SR-форм.
==== Метаболизм ====
Особенности метаболизма БА β-аланина обусловлены его химической структурой. На рисунке 4 представлено сходство БА бета-аланина с некоторыми другими аминокислотами и процесс образования карнозина в [[Скелетные мышцы|скелетных мышцах]].
[[Image:Alanin4.jpg|250px|thumb|right|Рис.4. Сходство химической структуры БА, Глицина и ГАМК (вверху) и биохомический процесс образования Карнозина в скелетных мышцах (внизу). По J.Caruso и соавт., 2012.]]
'''БАБета-аланин''' – непротеиногенная [[Аминокислоты - вред и побочные эффекты|аминокислота ]] (не участвует в синтезе белков) и продуцируется в самом организме в процессе распада пиримидинов, декарбоксилирования кишечной микрофлорой L-аспартата и трансаминирования при взаимодействии 3-оксопропаната и L-аспартата (<ref>Tiedje K.E.Tiedje и соавт, Stevens K., Barnes, S., Weaver D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int. 2010), 57, 177–188.</ref>. Синтез БА бета-аланина происходит в [[Печень|печени ]] в процессе необратимой деградации тимина, цитозина и урацила. После синтеза БА β-аланина транспортируется в мышечные клетки, проникает в сарколемму за счет натрий и хлор-зависимой транспортной системы, которая может быть универсальной для сходных по химической структуре аминокислот (рис.4). Аналогичный процесс происходит и в ЦНС, где БА играет роль нейропередатчика и нейромодулятора, имеет идентифицированные места связывания с рецепторами ГАМК, NMDA и глицина в гиппокампе и некоторых других структурах, участвующих в формировании когнитивных функций.
Внутри возбудимых клеток БА β-аланин может формировать дипептидную связь с гистидином в процессе [[АТФ: научный обзор|АТФ-зависимой реакции ]] и действия фермента карнозин-синтетазы, образуя карнозин (рис.4). Синтез карнозина регулируется величиной поступления БА β-аланина внутрь мышечных волокон (<ref>Derave W.Derave и соавт, Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010, 1, 40(3):247-263.</ref>, уровнем активности карнозин-синтетазы и, в отсутствие достаточного поступления БА бета-аланина с пищей, печеночным синтезом БА бета-аланина и его транспортом в [[скелетные мышцы (]]<ref>Harris, R.C.Harris и соавт, Wise, J.A., Price, K.A. et al. Determinants of muscle carnosine content. Amino Acids 2012), 43, 5–12.</ref>. Нормальный уровень внутриклеточного карнозина 20-30 ммол/кг-1 сухого веса тела, у мужчин он выше, чем у женщин, с возрастом понижается в среднем на 47% к 70 годам по сравнению с 20-летними лицами. Существует прямая корреляционная связь возрастного снижение БА β-аланина и тестостерона[[тестостерон]]а. Карнозин, как и БАбета-аланин, выполняет множество функций: снижение окисления липидов и протеинов; повышение АТФ-азной активности; регуляция функции макрофагов; защита клеточных мембран; образование хелатов двухвалентных катионов и др., в том числе, связанных с процессом старения. Важным аспектом является участие в нейрогенной регуляции, особенно, в процессах памяти.
==== Фармакодинамика (механизм действия) ====
'''[[Карнозин]] (β-Аланил-L-Гистидин) ''' – естественный дипептид организма, образующийся, как уже отмечалось выше, в результате соединения [[Бета-аланин (научный обзор)|бета-Аланина аланина]] и Гистидина [[Гистидин]]а при помощи карнозин-синтетазы. Депо карнозина находится в скелетных мышцах. Распад этого соединения происходит под влиянием фермента карнозиназы, которая локализуется в сыворотке крови и ряде тканей, но отсутствует в мышечной ткани (С<ref>Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance.Sale и соавтAmino Acids.2010, 201039(2):321–333.</ref>. Поэтому ''пероральное введение карнозина – неэффективный метод повышения содержания уровня внутримышечного карнозина, т.к. поступающий через кишечник карнозин в конечном счете полностью метаболизируется перед попаданием в мышцы'' (<ref>Gardner M.L.Gardner и соавт, Illingworth K.M., Kelleher J., Wood D.Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J. Physiol. 1991, 439(1):411–422.</ref>. Роль '''Карнозина как внутриклеточного протонного буфера''' впервые была выявлена еще в 1953 году в СССР С.Е.Севериным (<ref>Severin S.E.Severin и соавт, Kirzon M.V., Kaftanova T.M. Effect of carnosine and anserine on action of isolated frog muscles. Dokl. Akad. Nauk SSSR.1953, 91(3):691–694.</ref>, который показал, что отсутствие карнозина приводит к быстрому развитию [[Мышечная усталость и митохондриальное дыхание|усталости ]] и ацидоза. По показателю логарифма константы диссоциации (pKa) равному 6.83 и высокой концентрации в мышцах карнозин представляется более эффективным буфером, чем два других физико-химических буфера - [[Бикарбонаты (бикарбонатная буферная система)|бикарбонат ]] (pKa 6.3) или неорганический [[Фосфаты|фосфат ]] (pKa 7.2), при превышении физиологического диапазона рН. Предварительные данные показывают, что вклад карнозина в буферизационную способность мышц составляет от 7 до 40%. Данные о способности пищевых добавок БА β-аланина увеличивать внутримышечную концентрацию карнозина и снижать посттренировочную редукцию рН (ацидоз, вызванный физической нагрузкой), подтверждают ''концепцию о значительной роли карнозина в буферных системах мышечной ткани''. Потенциальная физиологическая роль карнозина не ограничивается функцией протонного буфера. В процессе повышенных физических нагрузок образуется большое количество реактивных кислородных радикалов, которые вносят существенный вклад в развитие утомляемости и мышечных повреждений. Карнозин препятствует действию этих субстанций, выступая в роли антиоксиданта (G.I.Klebanov и соавт., 1998), а также связывая в виде хелатных соединений ионы таких металлов как медь и железо. === Применение пищевых добавок БА в различных видах спорта ======= Велосипедный спорт ====Велосипедный спорт (C.A.Hill и соавт., 2007). БА (CarnoSyn) назначался перорально 13 лицам в течение 4 недель, а 8 из них – в течение 10 недель. Биопсия мышечной ткани производилась до назначения БА, через 4 и 10 недель после приема БА. Испытуемые проходили тест на велотренажере для определения общего объема выполненной работы (total work done – TWD) при максимальной мощности (Wmax). 12 испытуемых получали плацебо. Выявлено, что БА значительно и достоверно повышает содержание карнозина в мышцах (+58.8% и +80.1% после 4-х и 10-и недель приема БА, соответственно). Это возрастание было одинаковым в процентном отношении во всех типах мышечных волокон, хотя исходные показатели концентрации карнозина были в 1,7 раза выше в волокнах типа IIa. В контрольной группе не отмечено изменений. Концентрация таурина не изменялась. Параллельно БА увеличивал общий объем выполненной работы по мере возрастания длительности приема аминокислоты: +13% на 4-ой неделе, и еще +3,2% дополнительно – на 10-й неделе. В контрольной группе также не выявлено изменений. Авторы связывают '''повышение работоспособности в тесте на велотренажере под влиянием БА с возрастанием концентрации внутримышечного карнозина'''.==== Борьба и футбол ==== Цель двойного-слепого плацебо-контролируемого исследования (B.D.Kern, T.L.Robinson, 2011) заключалась в оценке эффективности пищевых добавок БА как потенциального эргогенного вещества в тестах анаэробной мощности (высокоинтенсивные кратковременые упражнения, повторяющийся спринт) после 8 недель приема БА. В исследовани приняли участие 22 борца (возраст 19.9 ± 1.9 года) и 15 футболистов (18.6 ± 1.5 года), каждый из которых получал 4 г/день БА или плацебо. У испытуемых до и после приема БА фиксировались следующие показатели: время выполнения теста бега на 300 ярдов отрезками по 25 ярдов с возвратом (timed 300-yd shuttle – один из беговых тестов оценки состояния сердечно-сосудистой системы, требующий высокой анаэробной выносливости); время удержания на перекладине в положении подтягивания (90° flexed-arm hang (FAH), композиция тела и лактат крови после бегового теста. У футболистов отмечено укорочение времени выполнения бегового теста на 1,1 сек по сравнению с плацебо (0,4 сек) и удлинение времени удержания по тесту FAH (3,0 сек против 0,39 сек в плацебо-группе). У борцов на первый план вышло увеличение ТМТ (тощей массы тела) – +0,5 кг против снижения на 0,4 кг в плацебо-группе. У футболистов также отмечено повышение ТМТ: на 1 кг в группе с БА и на 0,5 кг – в плацебо-группе. Авторы делают вывод о '''положительном влиянии БА в дозе 4 г/день на физическую готовность борцов и футболистов за счет повышения анаэробной мощности'''. J.R.Hoffman и соавторы (2008) исследовали эффект 30-дневного приема БА в дозе 4,5 г/день у игроков футбольной команды в отношении показателей анаэробной готовности. Испытуемые были рандомизированы в две группы: БА и плацебо (мальтодекстрин 4,5 г/день). Прием добавок начинался за 3 недели до предсезонных тренировочных сборов и продолжался еще 9 дней после их начала. Оценка физической готовности включала 60-секундный «Wingate anaerobic power test» и возвратный бег на 200 ярдов с 2-х минутным отдыхом между спринтами. Показатели этих тестов оценивались в первый день сборов. БА не влиял на обучаемость испытуемых в процессе повторения упражнений, но снижал утомляемость по показателю анаэробной мощности в Wingate-тесте. БА повышал объем выполняемой работы по тесту жима лежа и другим тестам в процессе тренировочной сессии (P = 0,09). Кроме того, БА снижал субъективное чувство усталости (данные специальных анкет-опросников). Авторы делают заключение, что '''прием БА у хорошо тренированных спортсменов в дозе 4.5 г/день в течение 30 дней не влияет на обучаемость при повторяющихся упражнениях, однако достоверно увеличивает объем выполняемой работы при жиме лежа и проявляет общую тенденцию к росту показателей пропорционально времени приема препарата. БА также снижает развитие усталости'''.==== Гребной спорт ====Исходной предпосылкой работы A.Baguet и соавт., 2010 явилось установленное ранее в исследованиях у нетренированных лиц повышение содержания карнозина в мышечной ткани и улучшение анаэробной тренировочной физической готовности. Цель работы состояла в установлении взаимосвязи между повышением мышечного карнозина и улучшением физической готовности после приема БА у элитных гребцов. В исследовании приняло участие 18 элитных бельгийских гребцов, которые в течение 7 недель принимали БА (5 г/день) или плацебо. Методом магнитно-резонансной спектроскопии определялось содержание карнозина в двух мышцах (soleus и gastrocnemius medialis) до и после курса приема БА и плацебо. Физическая готовность оценивалась по результатам выполнения 2 км эргометрического теста. Исходные показатели содержания карнозина в мышцах имели строгую положительную корреляцию со скоростью прохождения дистанции в диапазоне 100, 500 и 2000 м. На фоне курсового приема БА содержание карнозина возрастало на 45,3% в [[Камбаловидная мышца|камбаловидной мышце]] и на 28,2% - в икроножной. Время прохождения дистанции в группе с БА было короче на 4,3 с по сравнению с плацебо-группой. Повышение концентрации карнозина положительно коррелировало с улучшением физической готовности. Авторы делают заключение, что '''уровень мышечного карнозина – новая детерминанта готовности гребцов, а курсовое назначение БА в дозе 5 г/день в течение 49 дней достоверно повышает эту готовность на протяжении всей дистанции в 2 км в прямой связи с возрастанием уровня карнозина'''. ==== Плавание ==== W.Chung и соавторы (2012) из Австралии выполнили специальное исследование в группах элитных пловцов (23 мужчины и 18 женщин, возраст 21.7 ± 2.8 года), которые в течение 10 недель получали пищевую добавку БА (4 недели нагрузочную дозу 4,8 г/день, далее поддерживающую дозу 3,2 г/день) или плацебо. Рассчитывался логарифм времени тренировочной готовности до и после курса приема БА (до и после национальных и международных соревнований). Стандартный тренировочный тест включал спринтерскую дистанцию (4х50м). Анализ крови включал оценку рН, концентрацию бикарбоната и лактата. Не выявлено значимых эффектов БА в отношении показателей крови. Вместе с тем, динамика изменений физической готовности, определяемая по времени выполнения плавательного теста, существенно зависела от срока приема БА (рис.6). [[Image:Alanin6.jpg|250px|thumb|right|Рис.6. Изменение времени прохождения короткой дистанции элитными австралийскими пловцами (в% по оси ординат) до (week 0) и после курсового приема БА (сплошная линия) и плацебо (пунктирная линия) через 4 недели (week 4) и 10 недель (week 10). До 4-ой недели доза БА составляла 4,8 г/день (нагрузочная доза), после 4-ой и до 10 недели – 3,2 г/день (поддерживающая доза). Остальные объяснения в тексте. По W.Chung и соавт. (2012)]]Как видно из графиков, до 4-ой недели включительно отмечается снижение среднего времени прохождения дистанции на фоне ежедневной дозы БА 4,8 г/день. Однако далее переход на поддерживающую дозу 3,2 г/день приводит к полному устранению положительных сдвигов в концу курсового приема БА. Авторы делают заключение, что '''прием БА в дозе 4.8 г/день в течение 4-х недель умеренно повышает физическую готовность у элитных женщин-пловцов, но при дальнейшем снижении дозы до 3,2 г/день в течение 6-и недель эти положительные сдвиги уходят'''. Выявленные закономерности требуют: 1) учета времени курсового назначения дозы 4,8 г/день (не более 4-х недель до старта); 2) продолжения исследования данной дозы без снижения в сроки более 4-х недель; 3) исследования комбинаций БА (в частности с креатином) в тех же условиях. == Обзоры и мета-анализ эффективности и безопасности добавок БА в спортивной медицине == '''G.G.Artioli и соавторы (2010)''' (обзор). В этом аналитическом исследовании представлены данные по метаболизму БА и карнозина при их экзогенном введении, полученные на тот момент, и обсуждается влияние пищевых добавок БА на физическую готовность. Постулируется, что внутримышечный ацидоз является одной из главных причин усталости при интенсивных тренировках, а карнозин играет значительную роль в регуляции мышечной рН. Синтез карнозина из БА и [[гистидин]]а в мышечных клетках ограничивается величиной поступления БА внутрь клеток, т.е. биодоступностью последнего. Добавки БА увеличивают внутриклеточное содержание карнозина, повышая буферную способность клеток нивелировать ацидотические изменения в процессе физических нагрузок и , как результат, усиливая физическую готовность спортсменов и лиц, занимающихся улучшением своей физической формы. Положительные эффекты БА подтверждены для многократных и однократных физических нагрузок, длящихся более 60 секунд. Кроме того, БА замедляет развитие нейромышечной усталости. Хотя БА не повышает максимальную силу или VO2макс, некоторые аспекты, характеризующие выносливость, такие как анаэробный порог и время истощения, могут улучшаться. При применени дозы, превышающей 800 мг, могут наблюдаться парестезии, которые, однако, носят транзиторный характер, и связаны с величиной концентрации БА в плазме. Эти побочные эффекты могут быть нивелированы применением специальных форм с медленным высвобождением БА в кишечнике, или использованием специальных схем и комбинаций в процессе дозирования БА. Пищевые добавки БА безопасны как при однократном, так и достаточно длительном применении. '''W. Derave и соавторы (2010)''' (обзор). Хроническое пероральное применение БА во всех вариантах без исключения повышает внутримышечную концентрацию карнозина, причем в зависимости от дозы и частоты назначения уровень карнозина может увеличиваться до 80%. Авторы обзора обращают внимание на тот факт, что улучшение физической готовности отмечается как у тренированных, так и у начинающих спортсменов и лиц, подверженных физическим нагрузкам. Это расширяет перечень целевых групп, которым могут быть рекомендованы пищевые добавки БА в качестве средств улучшения физической формы и повышения эффективности тренировок. Оценивая роль биохимических процессов, в которых участвует БА, авторы делают вывод о том, что БА, хотя и не участвует в классических АТФ-метаболических путях, играет важную роль как дипептид с гистидином в гомеостазе сократительных мышечных клеток. Это касается получения анаэробной энергии, снижения внутриклеточного ацидоза в скелетной мускулатуре, повышения устойчивости к повреждающему действию реактивных кислородных радикалов (антиоксидантная активность). Отличительной особенностью действия БА является выраженное увеличение концентрации карнозина в мышечных волокнах IIa типа (быстросокращающиеся волокна), хотя и в других типах волокон она нарастает при введении БА, но в меньшей степени. На основании ряда сравнительных исследований авторы обзора делают вывод, что содержание карнозина в мышцах меньше у женщин по сравнению с мужчинами, снижается с возрастом, зависит от диеты (концентрация карнозина ниже у вегетарианцев). Атлеты-спринтеры имеют значительно более высокую исходную концентрацию карнозина, что расценивается в качестве генетического фактора и критерия отбора будущих спортсменов. Авторы считают доказанной эффективность БА в целом ряде конкретных ситуаций при длительной подготовке спортсменов. В то же время, многие аспекты влияния БА на физическую готовность требуют дальнейшего изучения. '''R.M.Hobson и соавторы (2012)''' (мета-анализ). В данный мета-анализ включено 15 опубликованных статей по результатам 57 оценок в 23 тестах физической готовности влияния 18 режимов пищевых добавок у 360 участников (174 – добавки БА, группа БА; 186 участников – группа плацебо – ПЛ) (табл.2) '''Таблица 2. Опубликованные исследования (за период 2006-2011) применения пищевых добавок БА в спорте, включенные в мета-анализ R.M.Hobson и соавторов (2012)''' {| class="wikitable"|-! Авторы исследования !! Категория участников !! Протокол теста !! Дозирование БА !! Суммарная доза БА (г) !! Средняя величина эффекта|-| А.Baguet и соавт., 2010 || Элитные гребцы БА=8, ПЛ=9 || Гребля 2 км || 5 г/день 49 дней || 245 || БА=0,261<br />ПЛ=-0,098|-| W.Derave и соавт., 2007 || Мужчины-бегуны на 400 м. БА=8, ПЛ=7 || Бег-спринт, изометрические упражнения на выносливость || 2,4 г/день 4 дня, затем 3,6 г/день 4 дня, затем 4,8 г/день 20-27 дней || До 153,6 || БА=0,369<br />ПЛ=0,284|-| С.А.Hill и соавт., 2007 || Мужчины, восстановительный период. БА=13, ПЛ=12 || Объем работы на велотре-нажере при 110% макс. мощности || 4 г/день 7 дней, затем 4,8 г/день 7 дней, затем 5,6 г/день 7 дней, затем 6,4 г/день 7 дней || 145,6 за 4 недели 414,4 за 10 недель || БА=0,850<br />ПЛ=0,043 <br />БА=1,046<br />ПЛ=0,105|-| Т.Jordan и соавт., 2010 || Мужчины, восстановительный период. БА=8, ПЛ=9 || Бегущая дорожка, бег до отказа (изнеможения) || 6 г/день 28 дней || 168 || БА=0,185<br />ПЛ=0,070|-| I.P.Kendrick и соавт., 2008 || Мужчины-студенты БА=13, ПЛ=13 || Общая сила, величина изокинетической мощности, мышечная выносливость || 6,4 г/день 70 дней || 448 || БА=0,691<br />ПЛ=0,654|-| B.D.Kern, T.L.Robinson, 2011 || Мужчины-борцы и футболисты, БА=17, ПЛ=20 || Спринтерский бег, мышечная выносливость || 4 г/день 60 дней || 224 || БА=0,255 <br />ПЛ=0,176|-| С.Sale и соавт., 2011 || Мужчины, восстановительный период. БА=10, ПЛ=10 || Объем работы на велотре-нажере при 110% макс. мощности || 6,4 г/день 28 дней || 179 || БА=0,964<br />ПЛ=0,104|-| A.E.Smith и соавт., 2009a,b <br />3 недели || Мужчины, восстановительный период. БА=18, ПЛ=18 || Объем работы на велотренажере при 110% макс. мощности VO2max || 6 г/день 21 день || 126 || БА-0,600<br />ПЛ=0,607|-| A.E.Smith и соавт., 2009a,b <br />6 недель || Мужчины, восстановительный период. БА=18, ПЛ=18 ||Объем работы на велотренажере при 110% макс. мощности VO2max || 6 г/день 21 день, затем 3 г/день 21 день || 189 || БА-1,067<br />ПЛ=1,180|-| J.R.Stout и соавт., 2006 || Здоровые мужчины-добровольцы, БА=12, ПЛ=13 || Циклический тест по возрастающей до отказа || 6,4 г/день 6 дней, затем 3,2 г/день 22 дня || 108,8 || БА=0,489<br />ПЛ=-0,063|-| J.R.Stout и соавт., 2007 || Здоровые женщины-добровольцы, БА=11, ПЛ=11 || Циклический тест по возрастающей до отказа || 3,2 г/день 7 дней, затем 6,4 г/день 21 день || 156,8 || БА=0,217<br />ПЛ=-0,023|-| J.R.Stout и соавт., 2008 || Пожилые мужчины и женщины-добровольцы, БА=12, ПЛ=14 || 2-х мин циклы на тренажере с возрастающей нагрузкой || 2,4 г/день 90 дней || 216 || БА=2,648<br />ПЛ=-0,007|-| K.M.Sweeney и соавт., 2010 || Мужчины, восстановительный период. БА=9, ПЛ=10 || 2 подхода 5х5 с. Спринт на беговой дорожке || 4 г/день 7 дней, затем 6 г/день 28 дней || 196 || БА=0,037<br />ПЛ=0,116|-| R.VanThienen и соавт., 2009 || Мужчины-велосипедисты, БА=9, ПЛ=8 || Велотренажер тест до отказа Имитация режима велогонки || 2 г/день 14 дней, затем 3 г/день 14 дней, затем 4 г/день 28 дней || 182 || БА=0,292<br />ПЛ=0,060|-| A.A.Walter и соавт., 2010 <br />3 недели || Женщины, восстановительный период. БА=14, ПЛ=19 || Велотренажер тест до отказа || 6 г/день 21 день || 126 || БА=0,953<br />ПЛ=0,537|-| A.A.Walter и соавт., 2010 <br />6 недель || Женщины, восстановительный период. БА=14, ПЛ=19 || Велотренажер тест до отказа || 6 г/день 21 день, затем 3 г/день 21 день || 189 || БА=1,129<br />ПЛ=0,791|-| R.F.Zoeller и соавт., 2007 || Здоровые мужчины-добровольцы, БА=12, ПЛ=13 || Велотренажер тест до отказа || 6,4 г/день 6 дней, затем 3,2 г/день 22 дня || 108,8 || БА=0,117<br />ПЛ=-0,152|} <small>''Примечания'': БА – бета-аланин; ПЛ – плацебо</small> Добавки БА достоверно (P=0,002) по сравнению с ПЛ улучшали показатели мышечной выносливости при выполнении кратковременных тестовых упражнений, а также физической готовности, при этом эффективная суммарная курсовая доза БА составила 179 г. Не выявлено положительного влияния БА в тестах продолжительностью менее 60 с. Данный мета-анализ дал хорошую доказательную базу наличия у БА умеренного эргогенного эффекта, проявляющегося повышением на 2,85% мышечной выносливости под влиянием БА в процессе выполнения движений продолжительностью 60-240 с. == Пищевые добавки БА и физическая подготовка военнослужащих ==
Потенциальная физиологическая роль карнозина не ограничивается функцией протонного буфера. В процессе интенсивных повышенных физических тренировок военных и повышения их боеготовности часто отмечается снижение физической формы. Применение специальных пищевых добавок с целью избежать подобных спадов физической формы – обычная практика в армиях многих стран. В частностинагрузок образуется большое количество реактивных кислородных радикалов, которые вносят существенный вклад в США частота применения БАДов достигает 30-40% в зависимости от рода войск развитие [[Утомление и утомляемость|утомляемости]] и характера выполняемых задачмышечных повреждений. Следует подчеркнутьКарнозин препятствует действию этих субстанций, что '''выступая в армейской подготовке военнослужащих западных странроли [[Антиоксиданты|антиоксиданта]]<ref>усталости Klebanov G.I., как и в спортивной подготовке спортсменовTeselkin Yu. O., проявляется четкая тенденция к смещению акцента с применения фармакологических средств на использование нутритивных методов повышения физической готовности'''Babenkova I.V. Такet al. Effect of carnosine and its components on free-radical reactions. Membr Cell Biol. 1998, ряд членов Медицинской Корпорации армии США высказал необходимость исследования нефармакологических 12(недопинговых1) альтернатив снижения утомляемости военнослужащих :89–99.</ref>, а также связывая в процессе тренировки выносливости и выполнения тактических задач (M.B.Russo виде хелатных соединений ионы таких металлов как [[медь]] и соавт., 2008)[[железо]].
В исследовании 2014 года J.R.Hoffman и соавторы<ref name="Hoffman14" /> показали, что '''прием бета-аланина (6 г/день) в течение 4-х недель молодыми здоровыми солдатами элитного военного подразделения армии Израиля увеличивает мощность физических движений ([[Прыжки в высоту|прыжков]]), точность стрельбы и скорость поражения цели'''. Эти улучшения в подготовке выявляются после 4 недель [[Высокоинтенсивные тренировки|высокоинтенсивных тренировок]] и однократного [[бег]]а (4 км) на [[выносливость]]. В то же время не выявлено улучшений когнитивных функций под влиянием бета-аланина в условиях повышенных нагрузок и [[Утомление мышц|утомления]]. Авторы объясняют этот факт возможной неадекватностью используемого теста в данных условиях для оценки изменений когнитивных функций.[[Image:Alanin7.jpg|250px|thumb|right|Рис.7. Изменение содержания карнозина (ммоль) в скелетных мышцах (gastrocnemius) солдат элитного военного подразделения после 30 дней дней приема БА бета-аланина в дозе 6 г/день (темный столбик) или плацебо (светлый столбик)]]В последующих работах J.R.Hoffman и соавторы<ref name="Hoffman15a" /><ref name="Hoffman15b" /> на солдатах этого же элитного подразделения сил самообороны Израиля исследовали влияние ежедневного приема бета-аланина в дозе 6 г/день в течение 30 дней на содержание карнозина в мышцах и мозге методом магнитно-резонансной спектроскопии (МРС – MRS – диагностический метод исследования, основанный на использовании явления ядерного магнитного резонанса для получения биохимического профиля тканей). Оценивалась также физическая готовность и когнитивные функции, но уже с помощью другого теста, более адекватного специфике задач данного подразделения. Через 30 дней отмечено значительное увеличение содержания карнозина в мышцах (рис.7), совпадающее с изменениями, наблюдаемыми ранее у спортсменов, но без изменения уровня карнозина в мозге.
Улучшение физической готовности носило выборочный характер и касалось, в основном, однократного кратковременного (в интервале 60-360 секунд) упражнения (переноска пострадавшего на 50 метров) (рис.8).
[[Image:Alanin8.jpg|250px|thumb|right|Рис.8. Изменение (∆, сек, по оси ординат) времени выполнения теста «переноска пострадавшего» на 50 метров у солдат элитного военного подразделения после 30 дней приема БА бета-аланина в дозе 6 г/день (темный столбик) или плацебо (светлый столбик) ]]С помощью нового теста удалось выявить достоверное улучшение когнитивных функций на фоне приема БАбета-аланина, что проявлялось не только повышением точности стрельбы, но и способностью сохранять фокусировку в условиях массированного огня. Этот факт расценен авторами как результат антистрессорного опосредованного действия БАбета-аланина.
== БА Бета-аланин как потенциальный протектор посттравматических стрессовых нарушений ==
По данным Американской Ассоциации Психиатров (2013) [[стресс]], перенесенный вследствие травмы, в ряде случаев служит причиной значительных поведенческих изменений, включая боязнь высоких нагрузок, потерю концентрации, неадекватность реакций на события и др. Имеются основания предполагать, что повышение уровня карнозина в мозге оказывает [[Антидепрессанты|антидепрессанто-подобное действие (]]<ref>Tomonaga S.Tomonaga и соавт, Yamane H., Onitsuka E. et al. Carnosine-induced anti-depressant-like activity in rats. Pharmacol. Biochem. Behav. 2008), 89:627–632.</ref>. J.R.Hoffman и соавторами (<ref>Hoffman J.R., Ostfeld I., Stout J.R. et al. β‑Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids, 2015c) , 47:1247–1257. </ref> выполнена экспериментальная работа, которая создает основу для еще одного направления применения БА бета-аланина в спортивной медицине – нутритивно-метаболической терапии (НМТ) и предотвращения развития посттравматического стресс-синдрома, ускорения процесса адаптации спортсменов после травм. В опытах на крысах 30-дневное пероральное введение БА бета-аланина в дозе 100 мг/кг значительно уменьшало поведенческие реакции, характерные для посттравматического состояния. Нормализация поведения сопровождалась повышением концентрации карнозина в гиппокампе.
{{аминокислоты|3=3}}
*[[Бета-аланин]]
*[[Бета-аланин (научный обзор)]]
*[[Бета-аланин в спорте]]
*[[Действие бета-аланина]]
*[[Применение бета-аланина]]
*[[Препараты витамина D в спортивной медицине: научный обзор]]
== Ссылки Источники ==*Artioli G.G., Gualano B., Smith A. et al. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010, 42(6):1162-1173.*Baguet A., Bourgois J., Vanhee L. et al. Important Role Of Muscle Carnosine In Rowing Performance. J. Appl. Physiol. 2010, 109(4):1096-1101.*Chung W., Shaw G., Anderson M.E. et al. Effect of 10 Week Beta-Alanine Supplementation on Competition and Training Performance in Elite Swimmers. Nutrients 2012, 4(10): 1441-1453.*Decombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release b-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012, 43:67–76*Derave, W., Özdemir, M.S., Harris, R.C. et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J. Appl. Physiol. 2007, 103, 1736–1743.*Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010, 1, 40(3):247-263.*De Vries H.A., Tichy M.W., Housh T.J. et al. A method for estimating physical working capacity at the fatigue threshold (PWCFT). Ergonomics. 1987, 30(8):1195-1204.*Gardner M.L., Illingworth K.M., Kelleher J., Wood D. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J. Physiol. 1991, 439(1):411–422.*Harris R.C., Hill C., Wise J.A. Effect of combined beta-alanine and creatine monohydrate supplementation on exercise performance (Abstract). Med. Sci. Sports Exerc. 2003, 35(5):S218.*Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30(3):279–289.*Harris, R.C., Wise, J.A., Price, K.A. et al. Determinants of muscle carnosine content. Amino Acids 2012, 43, 5–12.*Hill C.A., Harris R.C., Kim H.J. et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007, 32(2):225-233.*Hobson R.M., Saunders B., Ball G. et al. Effects Of β-alanine Supplementation On Exercise Performance: A Meta-analysis. Amino Acids. 2012, 43(1):25-37*Hoffman J.R., Ratamess N.A., Kang J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006, 16(4):430-446.*Hoffman J.R., Ratamess N.A., Ross R. et al. Beta-alanine And The Hormonal Response To Exercise. Int. J. Sports Med. 2008a, 29(12):952-958.*Hoffman J.R., Ratamess N.A., Faigenbaum A.D. et al. Short-duration Beta-alanine Supplementation Increases Training Volume And Reduces Subjective Feelings Of Fatigue In College Football Players. Nutr. Res. 2008b, 28(1):31-35.*Hoffman J.R., Landau G., Stout J.R. et al. β-alanine supplementation improves tactical performance but not cognitive function in elite special operation soldiers. J. Int. Soc. Sports Nutr. 2014, 11:15.*Hoffman J.R., Stout J.R., Harris R.C., Moran D.S. β‑Alanine supplementation and military performance. Amino Acids. 2015a, 47: 2463-2474.*Hoffman J.R., Landau G., Stout J.R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids. The Forum for Amino Acid, Peptide and Protein Research. 2015b, 47(3): 627-636.*Hoffman J.R., Ostfeld I., Stout J.R. et al. β‑Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids, 2015c, 47:1247–1257. *Jordan T., Lukaszuk J., Misic M., Umoren J. Effect Of Beta-alanine Supplementation On The Onset Of Blood Lactate Accumulation (OBLA) During Treadmill Running: Pre<references/post 2 Treatment Experimental Design. J. Int. Soc. Sports Nutr. 2010, 19:7:20.*Kendrick I.P., Harris R.C, Kim H.J. et al. The effects of 10 weeks of resistance training combined with b-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 2008, 34:547–554.*Kern B.D., Robinson T.L. Effects Of β-alanine Supplementation On Performance And Body Composition In Collegiate Wrestlers And Football Players. J. Strength Cond. Res. 2011, 25(7):1804-1815. *Klebanov G.I., Teselkin Yu. O., Babenkova I.V. et al. Effect of carnosine and its components on free-radical reactions. Membr Cell Biol. 1998, 12(1):89–99.*Ko R., Low Dog T., Gorecki D.K. et al. Evidence-based evaluation of potential benefits and safety of beta-alanine supplementation for military personnel. Nutr. Rev. 2014, 72:217–225.*Russo M.B., Arnett M.V., Thomas M.L., Caldwell J.A. Ethical use of cogniceuticals in the militaries of democratic nations. Am. J. Bioeth. 2008, 8:39–49*Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010, 39(2):321–333.*Sale C., Saunders B., Hudson S. et al. Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med. Sci. Sports Exerc. 2011, 43(10):1972–1978.*Severin S.E., Kirzon M.V., Kaftanova T.M. Effect of carnosine and anserine on action of isolated frog muscles. Dokl. Akad. Nauk SSSR.1953, 91(3):691–694.*Smith A.E., Walter A.A., Graef J.L. et al. Effects of b-alanine supplementation and high intensity interval training on endurance performance and body composition in men; a double blind trial. J. Int. Soc. Sports Nutr. 2009a, 6:5.*Smith A.E., Moon J.R., Kendall K.L. et al. The effect of b-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function. Eur. J. Appl. Physiol. 2009b,105:357–363.*Stout J.R., Cramer J.T., Mielke M. et al. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J.Strength Cond. Res. 2006, 20(4): 928–931.*Stout J.R., Cramer J.T., Zoeller R.F. et al. Effects Of Beta-alanine Supplementation On The Onset Of Neuromuscular Fatigue And Ventilatory Threshold In Women. Amino Acids. 2007, 32(3):381-386. *Stout J.R., Graves B.S., Smith A.E. et al. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. 2008, J. Int. Soc. Sports Nutr. 5:21*Sweeney K.M., Wright G.A., Glenn B.A., Doberstein S.T. The Effect Of Beta-alanine Supplementation On Power Performance During Repeated Sprint Activity. J. Strength Cond. Res. 2010, 24(1): 79-87. *Tiedje K.E., Stevens K., Barnes, S., Weaver D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int. 2010, 57, 177–188*Tomonaga S., Yamane H., Onitsuka E. et al. Carnosine-induced anti-depressant-like activity in rats. Pharmacol. Biochem. Behav. 2008, 89:627–632.*Van Thienen R., Van Proeyen K., Vanden Eynde B. et al. b-alanine improves sprint performance in endurance cycling. Med. Sci. Sports Exerc. 2009,41:898–903*Walter A.A., Smith A.E., Kendall K.L. et al. Six weeks of high-intensity interval training with and without b-alanine supplementation for improving cardiovascular fitness in women. J. Strength Cond. Res. 2010, 24:1199–1207.*Zoeller R.F., Stout J.R., O’kroy J.A. et al. Effects Of 28 Days Of Beta-alanine And Creatine Monohydrate Supplementation On Aerobic Power, Ventilatory And Lactate Thresholds, And Time To Exhaustion. Amino Acids. 2007, 33(3):505-510. >
[[Категория:Спортивное_питание]]