Вверх

Спорт-вики — википедия научного бодибилдинга

Изменения

Перейти к: навигация, поиск

Адаптация

66 байт убрано, 10 лет назад
Нет описания правки
{{DISPLAYTITLE:Адаптация мышц к физической нагрузке}}
{{Эндокринология}}
== Гормональные и обусловленные ростовыми факторами механизмы Механизмы адаптации скелетных мышц к физическим упражнениям == [[Гипертрофия мышц]] 
Физические упражнения можно рассматривать в качестве комплексного физиологического стимула, который воздействует на различные аспекты клеточной функции. Скелетные мышцы представляют одну из тканей, которая реагирует на физические упражнения, подвергаясь ряду видоизменений на уровне некоторых своих компонентов. Скорость сокращения скелетной мышцы, количество создаваемой при сокращении силы, а также способность противостоять утомлению, — все это важные показатели, имеющие непосредственное отношение к спортивным показателям. Благодаря высокой лабильности различных характеристик мышечной ткани, таких, как размер фибрилл, состав фибрилл и степень капилляризации ткани, скелетные мышцы способны должным образом приспосабливаться к изменениям, возникающим в ходе тренировочного процесса. В то же время характер адаптации скелетных мышц к силовым упражнениям и упражнениям на выносливость будет отличаться, что свидетельствует о существовании различных систем реагирования на нагрузку. Таким образом, приспособительный процесс скелетных мышц к тренировочным нагрузкам можно рассматривать как совокупность согласованных локальных и периферических событий, ключевыми регуляторными сигналами к которым являются гормональные, механические, метаболические и нервные факторы. Изменения в скорости синтеза гормонов и ростовых факторов, а также содержание их рецепторов являются важными факторами регуляции приспособительного процесса, позволяющего скелетным мышцам удовлетворить физиологические потребности различных видов двигательной активности. Краткое описание роли некоторых гормонов и ростовых факторов в гипертрофии мышц, в регуляции фенотипа миофибрилл и преобразовании капиллярной кровеносной сети и составляет содержание данной главы.
 === Увеличение скелетной мышцы: роль ядер мышечной клетки и миосателлитоцитов ===
Усиление синтеза сократительных белков является безоговорочным условием увеличения размера мышечных клеток в ответ на тренировочную нагрузку. В процессе [[Рост мышц|роста скелетных мышц]] изменяется не только интенсивность синтеза белка, но и скорость его деградации (Goldbeig et al., 1975). У человека усиление синтеза белка выше уровня покоя происходит очень быстро, в течение 1 — 4 ч после завершения разового тренировочного занятия (Wong, Booth, 1990; Chcsley ct al., 1992; Biolo ct al., 1995; Philips ct al., 1997). В начале мышечной гипертрофии усиление синтеза белка коррелирует с ростом активности РНК (Laurent et al., 1978; Wong, Booth, 1990). Передача мРНК облегчается теми факторами, активность которых, как известно, регулируется путем их фосфорилирования (Frederickson, Sonebcig, 1993; Wada ct al., 1996). Параллельно с этими изменениями после тренировочного занятия происходит усиление транспорта аминокислот в мышцы, подвергавшиеся нагрузке. С теоретической точки зрения это увеличивает доступность аминокислот для белкового синтеза (Biolo et al., 1997).
Поскольку ядра дифференцированного мышечного волокна неспособны делиться, основным источником новых ядер в гипертрофированных мышечных волокнах являются миосателлитоциты или клетки-спутники (Moss, Lcblond, 1971; Schiaffino et al., 1976). Миосателлитоциты расположены между базальной пластиной и плазматической мембраной мышечных подокон (Mauro, 1961), для них характерно высокое ядерно-цитоплазматическое соотношение, хорошо развитый аппарат Гольджи, выраженный гранулярный эндоплазматический ретикулум и гетерохроматинизированное ядро (Campion, 1984). Активация клеток-спутников может происходить под воздействием ряда стимулов, после чего они начинают активно делиться. После этого образовавшиеся в результате митоза дочерние клетки сливаются с расположенными рядом дифференцированными мышечными клетками, обеспечивая таким образом увеличение количества ядер. Роль образующихся при делении миосателлитоцитов ядер в процессе мышечной гипертрофии подтверждается также экспериментами на животных моделях, демонстрирующими, что для обеспечения роста мышц необходимы активация и последующая пролиферация клеток-спутников (Rosenblatt, Parry, 1992; Rosenblatt et al., 1994).
Показано, что параллельно с гипертрофией мышц интенсивная силовая тренировка индуцирует существенное увеличение количества клеток-спутников в скелетных мышцах (Kadi, 2000; Roth et al., 2001). Сообщалось об увеличении на 46 % доли миосателлитоцитов в скелетной мышце молодой женщины после 10 недель силовой тренировки (Kadi, Tomell, 2000). Не так давно увеличение количества миосателлитоцитов было обнаружено в скелетных мышцах группы мужчин в возрасте 70—80 лет, занимавшихся тренировкой выносливости (Charifi et al., 2003а). Таким образом, клетки-спутники обеспечивают увеличение количества ядер в мышечном волокне и возобновление своего собственного пула (Bischoff, 1994; Schultz, McCormick, 1994; Kennedy et al., 1988; Yamada et al., 1989; McCormick, Schultz, 1992; Antonio, Gonyea, 1993; Kadi, Thomell, 1999). Вновь сформированные мышечные волокна замещают поврежденные или вносят свой вклад в гиперплазию мышечных волокон, только если количество вновь сформированных волокон превышает количество волокон, поврежденных во время тренировки.
=== Влияние андрогенных анаболических стероидов ===
Результаты исследований, проведенных на животных, показали, что использование андрогенных [[Анаболические стероиды|анаболических стероидов]] сопровождается значительным увеличением размера мышц и мышечной силы (Egginton, 1987; Salmons, 1992). Применение [[Тестостерон|тестостерона]] в концентрациях, превышающих физиологические, у мужчин с различным уровнем физической подготовленности на протяжении 10 недель сопровождалось существенным увеличением мышечной силы и поперечного сечения четырехглавой мышцы бедра (Basin et al., 1996). Известно, что андрогенные [[Анаболические гормоны|анаболические стероиды]] увеличивают интенсивность синтеза белка и способствуют росту мышц как in vivo, так и in vitro (Powers, Florini, 1975; Rogozkin, 1979). У человека прием анаболических стероидов на протяжении длительного времени усиливает степень гипертрофии мышечных волокон у хорошотренированных тяжелоатлетов (Kadi et al., 1999b). Скелетные мышцы тяжелоатлетов, принимавших анаболические стероиды, характеризуются экстремально большим размером мышечных волокон и большим количеством ядер в мышечных клетках (Kadi et al., 1999b). Подобную картину наблюдали на животных моделях, в частности, было обнаружено, что андрогенные анаболические стероиды опосредуют свое миотрофное воздействие путем увеличения количества ядер в мышечных волокнах и увеличения количества мышечных волокон (Galavazi, Szirmai, 1971; Sassoon, Kelley, 1986; Joubcrt, Tobin, 1989; Joubert, Tobin, 1995). Таким образом, анаболические стероиды способствуют увеличению количества ядер с целью обеспечения белкового синтеза в чрезвычайно гипертрофированных мышечных волокнах (Kadi et al., 1999b). Основным механизмом, посредством которого андрогенные анаболические стероиды индуцируют мышечную гипертрофию, является активация и индукция пролиферации миосателлитоцитов, которые впоследствии сливаются с уже существующими мышечными волокнами или между собой, формируя новые мышечные волокна. С таким выводом согласуются результаты иммуногистохимической локализации рецепторов андрогенов в культивируемых клетках-спутниках, демонстрирующие возможность непосредственного воздействия анаболических стероидов на миосателлитоциты (Doumit et al., 1996).
== Рецепторы андрогенов [[Андрогенные рецепторы]] ==
Блокада рецепторов [[Андроген|андрогенов]] оксендолоном — антагонистом рецепторов андрогенов — подавляет гипертрофию, стимулированную физическими упражнениями (Inoue et al., 1994). Хотя в процессах адаптации мышечных волокон к физическим упражнениям принимает участие несколько различных факторов, результаты этого исследования однозначно показывают, что рецепторы андрогенов являются важными посредниками в индуцированной физическими нагрузками мышечной гипертрофии.
Проведена также оценка влияния андрогенных анаболических стероидов на содержание рецепторов андрогенов. На животных моделях в культуре миосателлитоцитов было показано, что андрогенные анаболические стероиды могут повышать (Doumit et al., 1996) либо понижать (Lin et al., 1993; Bricout et al., 1994) количество рецепторов андрогенов в мышечной клетке. Установлено, что прием тестостерона усиливает иммунореактивность рецептора андрогенов в ядрах миосателлитоцитов свиньи (Doumit et al., 1996). Однако с помощью радиоактивного конкурентного анализа было показано, что после применения андрогенных анаболических стероидов происходит снижение концентрации рецепторов андрогенов в камбаловидной мышце и длинном разгибателе пальцев ноги (Bricout et al., 1994). В действительности, влияние андрогенных анаболических стероидов на содержание рецепторов андрогенов также может зависеть от типа клеток. Так, волокна скелетных мышц лягушки из плечевой области характеризуются наибольшей чувствительностью к тестостерону по сравнению с волокнами из других участков тела (Regnier, Herrera, 1993а, 1993b). Скелетные мышцы кролика, которые характеризуются сходным размером мышечных волокон, соотношением различных их типов, иннервацией и кровоснабжением могут сильно отличаться характером своего ответа на воздействие андрогенными анаболическими стероидами (Salmons, 1992). И наконец, у человека самостоятельный прием андрогенных анаболических стероидов на протяжении длительного времени вызывал изменения в ядрах, содержащих рецепторы андрогенов, мышечных волокон трапециевидной мышцы, при этом в латеральной широкой мышце бедра подобных изменений не наблюдалось (Kadi et al., 2000b). Очевидно, что для лучшего понимания изменения количества рецепторов андрогенов в скелетных мышцах в ответ на физиологические и нефизиологические воздействия необходимо проведение дальнейших исследований.
 == [[Факторы роста фибробластов ]] ==
Семейство факторов роста фибробластов (ФРФ) включает 10 представителей, участвующих в реализации различных биологических функций (Yamaguchi, Rossant, 1995). Некоторые изоформы ФРФ играют важную роль в процессе увеличения мышечных волокон в ответ на физиологические стимулы, другие могут оказывать свое миотрофное воздействие в ответ на физиологические стимулы, миотрофная роль третьих может проявляться во время восстановления мышечных волокон после повреждения мышцы. В этом отношении наиболее важным фактором, необходимым для нормальной регенерации скелетной мышцы после повреждения, является ФРФ6 (Floss et al., 1997), который может принимать участие в важных регенеративных событиях, таких, как активация и пролиферация клеток-спутников и содержание важных миогенных регуляторных факторов. На модели птиц, у которых утяжеляли крыло, было показано увеличение активности ФРФ2 и ФРФ4, локализованных в дифференцированной скелетной мышце в периферическом матриксе миофибрилы, которое сопровождало вызванную растягиваниями гипертрофию (Mitchell et al., 1999). Стимуляция ФРФ2 и ФРФ4 наряду со специфической локализацией подтверждает их роль в активации и пролиферации клеток-спутников (Mitchell et al., 1999). На основании расположения в том же месте, что и клетки-спутники, было выдвинуто предположение о том, что высвобождение этих факторов от гепариновых компонентов может иметь определенное значение в формировании новых мышечных волокон после физической тренировки (Yamada et al., 1989). Изменения в характере взаимодействия ФРФ и гепаринсульфатпротеогликанов в мышцах, подвергающихся физической нагрузке, может модулировать доступность ФРФ для миосателлитоцитов.
Исследование механизмов, управляющих превращением механических нагрузок в ростовые процессы скелетных мышц, позволило установить, что высвобождение ФРФ2 усиливается параллельно с увеличением мышечной нагрузки в модели культуры дифференцированных клеток скелетной мышцы человека (Clarke, Feeback, 1996). При нейтрализации биологической активности ФРФ2 происходило ингибирование ростовых процессов. Этот эксперимент однозначно подтверждает, что высвобождение ФРФ2 является важным аутокринным механизмом влияния механической нагрузки как фактор стимуляции ростовых процессов скелетной мышцы (Clarke, Feeback, 1996).
== [[Инсулиноподобные факторы роста и их рецепторы ]] ==
Выработка различных изоформ [[Инсулиноподобный фактор роста|инсулиноподобных факторов роста]] (ИФР) происходит во многих тканях и имеет важное значение для развития организма в эмбриональном и постнаталыгам периодах: ИФР-II необходим для нормального развития плода, в то время как [[ИФР-1|ИФР-I]] имеет важное значение для пре- и постнатального роста (DeChiara et al., 1990; Baker et al., 1993). Скелетные мышцы, выполняющие работу, вырабатывают и используют ИФР-1 (Brahm et al., 1997), который считается важным фактором, опосредующим увеличение скелетных мышц в ответ на физическую тренировку. ИФР-1 способен стимулировать пролиферацию, дифференцировку и слияние миосателлитоцитов (Dodson et al., 1985; Florini et al., 1991; Quinn et al., 1994; Goldspink D.F. et al., 1995). Иммуногистохимические исследования показали, что расположение ИФР-1 происходит в клетках-спутниках и в мышечных трубочках регенерирующих скелетных мышц крысы (Jennische et а)., 1987; Jennische, 1989; Jennische, Matejka, 1992).
Стимулирующее ростовые процессы воздействие ИФР-1 и ИФР-П осуществляется при участии рецептора ИФР-1. Мыши с нарушениями функции рецептора ИФР-1 погибали вскоре после рождения (Baker et al., 1993). Отсутствие рецептора ИФР-1 вызывает у мышей тяжелую гипоплазию, что свидетельствует о необходимости рецептора ИФР-1 для формирования дифференцированных скелетных мышц (Baker et al., 1993). В то время как функциональная инактивация рецептора ИФР-1 вызывала выраженную гипоплазию мышц, а также снижение уровней MyoD и миогенина (два важных представителя миогенных регуляторных факторов) (Fernandez et al., 2002), при сверхэкспрессии рецепторов наблюдаются противоположные явления (Quinn et al., 1994). Таким образом, рецептор ИФР-1 в данный момент рассматривается в качестве главного регулятора мышечной массы, регулирующего активность специфических для мышечной ткани генов. Однократное интенсивное занятие физическими упражнениями сопровождается существенным увеличением связывающей способности и чувствительности рецептора ИФР-1, а также повышением уровня мРНК рецептора в скелетных мышцах крысы (Willis et al., 1997). Точно так продолжительные физические тренировки вызывают заметное увеличение концентрации рецепторов ИФР-1 и [[инсулин]]а (Willis et al., 1998). В целом эти данные однозначно подтверждают важную роль ИФР-1 и рецепторов ИФР-1 в гипертрофии мышц.
 == Капиллярная сеть [[Кровоснабжение скелетных мышц ]] ==
Кровеносные сосуды скелетных мышц формируют обширную сеть капилляров вокруг мышечных волокон. Капилляры состоят из одинарного слоя эндотелиальных клеток, которые со стороны просвета сосуда покрыты гликокаликсом (обогащенный углеводами периферический участок клеточной мембраны), а с обратной — несут базальную мембрану. Капиллярная сеть, которая представляет собой своеобразный “конец” сердечно-сосудистой системы, играет важную роль в обеспечении мышечных волокон питательными веществами и осуществлении обмена кислорода и диоксида углерода в мышцах. Показано, что при тренировке выносливости в различных скелетных мышцах человека происходит изменение расположения кровеносных сосудов (Andersen Р., Henriksson, 1977; Hudiicka et al., 1992; Wang et al., 1993; Kadi et al., 2000a; Charifi et al., 2003b).
 === Фактор роста сосудистого эндотелия ===
Фактор роста сосудистого эндотелия (vascular endothelial growth factor, VEGF) представляет собой гепаринсвязывающий специфический для эндотелиальных клеток митоген, который стимулирует ангиогенез в различных тканях. Как физические нагрузки, так и гипоксия могут вызывать увеличение уровня мРНК VEGF в скелетной мышце человека (Gustafsson et al. 1999; Richardson et al., 1999). Повышение уровня мРНК VEGF у нормальных здоровых людей и страдающих заболеваниями ночек происходит уже после одного занятия физическими упражнениями с нагрузкой, равной 50 % максимальной нагрузки (Wagner et al., 2001). Кроме того, при гипоксии и физической нагрузке наблюдается увеличение количества рецепторов VEGF (flt-1 и flk-1) (Tagaki et al., 1996; Gerber et al., 1997; Olfert et al., 2001). Таким образом, фактор роста сосудистого эндотелия VEGF и его рецепторы участвуют в увеличении плотности капиллярной сети в ответ на двигательную активность. У нетренированных людей уже после одного занятия физическими упражнениями наблюдается значительный рост уровня мРНК VEGF в скелетных мышцах (Richardson et al., 2000). Эти события могут отражать первоначальный интенсивный рост капилляров в нетренированных мышцах, происходящий в начале выполнения тренировочной программы, после чего процессы ангиогенеза замедляются и требуют для своей стимуляции увеличения тренировочной нагрузки, поскольку уровень тренированности мышцы повышается.
Предполагается, что факторы роста фибробластов (ФРФ) также играют роль в аигиогенезе в скелетных мышцах. Однако последние исследования показали, что их вклад в процесс роста капилляров гораздо менее значительный по сравнению с VEGF (Richardson et al., 2000; Wagner et al., 2001). В настоящий момент, хотя и считается, что VEGF — наиболее важный фактор ангиогенеза, принимающий участие в адаптации капиллярной сети в скелетных мышцах человека, необходимы дальнейшие исследования, направленные па расширение наших знаний о вкладе всех известных факторов ангиогенеза в формирование и рост кровеносной сети скелетной мышцы.
== Сократительные способности [[Типы мышечных волокон ]] ==
Существование различных типов мышечных волокон обеспечивает значительную гетерогенность тканей скелетных мышц и их способность выполнять разнообразные функциональные задачи. Иммуногистохимический и биохимический анализ скелетных мышц показал, что такое структурно-функциональное разнообразие мышечных волокон обусловлено существованием широкого спектра изоформ миозина. Миозин — молекула, от которой наряду с актином зависит мышечное сокращение. Молекула миозина состоит из двух тяжелых цепей (МуНС) и четырех легких цепей (MyLC) (Schiaffino, Reggiani, 1996; Pette, Staron, 1997). Тяжелые цепи миозина представлены несколькими изоформами, от свойств которых зависят скоростно-силовые качества мышечных волокон.
В некоторых экспериментах на животных после применения андрогенных анаболических стероидов наблюдали изменение соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных изоформ (Fritzshe et al., 1994; Czesla ct al., 1997). Сообщалось об увеличении доли волокон, содержащих MyHCIIA, наряду с сокращением количества волокон, содержащих МуНСПВ, в ряде скелетных мышц грызунов после применения андрогенных анаболических стероидов (Eggington, 1987; Dimauro et al., 1992). Однако сообщалось также о том, что андрогенные стероиды вызывают уменьшение доли мышечных волокон, содержащих MyHCIIA, по отношению к волокнам, состоящим из МуНСПВ (Kelly et al., 1985; Lyons et al., 1986; Salmons, 1992). Эти результаты говорят о том, что характер воздействия андрогенных анаболических стероидов на сократительные способности может зависеть от типа мышц и у различных видов может быть разным. Действительно, существуют и другие данные, свидетельствующие об отсутствии какого-либо воздействия андрогенных анаболических стероидов па соотношение мышечных волокон, содержащих различные изоформы МуНС. Например, в экспериментах на животных чрезмерная нагрузка мышц вызывала увеличение содержания медленных MyHCI, и дополнительное использование андрогенных анаболических стероидов не влияло на характер содержания тяжелых цепей миозина (Boissonneault et al., 1987). Точно так прием андрогенных анаболических стероидон не вызывал изменений сдвига соотношения изоформ МуНС, вызванного экспериментами с обездвиживанием нижней конечности (Tsika et al., 1987). Наконец, не удалось обнаружить никаких различий в соотношении разных изоформ МуНС в трапециевидной мышце хорошо тренированных тяжелоатлетов, принимавших и не принимавших андрогенные анаболические стероиды (Kadi et al., 1999b).
 
=== Влияние эстрогенов ===
Хорошо известен тот факт, что уменьшение развиваемой силы происходит в менопаузе (Greeves et al., 1999; Dionne et al., 2000; Meeuwsen et al., 2000). Ha клеточном уровне показано, что удаление яичников сопровождается изменением соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных волокон и понижением спонтанного бега у крыс (Kadi et al., 2000). В целом изменения соотношения изоформ МуНС имеют следующую тенденцию: МуНС I < IIA < ИХ < ИВ. Эти результаты можно интерпретировать как то, что после удаления яичников происходят общие изменения содержания изоформ МуНС в сторону преобладания медленных изоформ, специфическая стимуляция генов медленных изоформ МуНС, или специфическое подавления генов, кодирующих медленные изоформы МуНС. Если животным с удаленными яичниками позволяли бегать и вводили эстрогены, в составе МуНС не происходило никаких изменений (Kadi et al., 2000). Таким образом, можно предположить, что двигательная активность в сочетании с введением эстрогенов способствуют поддержанию исходного соотношения быстрых и медленных волокон в мышцах.
 
=== Влияние соматотропного гормона ===
Сообщается о том, что прием соматотропного гормона (СТГ) индуцирует увеличение количества МуНСИХ в латеральной широкой мышце бедра у здоровых мужчин старшего возраста (Lange et al., 2002). Изменение соотношения изоформ МуНС в сторону увеличеиия МуНСИХ авторы исследования рассматривали как “омоложение” состава тяжелых цепей миозина, поскольку старение обычно сопровождается уменьшением доли МуНСИХ в этой группе мышц (Lange et al., 2002). Однако доля МуНСИХ у пациентов с дефицитом СТГ была выше по сравнению с основной массой здорового населения (Daugaard et al., 1999). Более того, после лечения больных с дефицитом СТГ препаратами рекомбинантного гормона роста в течение 6 месяцев у них не было выявлено никаких изменений в соотношении различных ияоформ МуНС (Daugaard et al., 1999). Аналогичным образом было показано, что применение СТГ у крыс приводит к существенному увеличению поперечного сечения мышечных волокон типа II в камбаловидной мышце, не оказывая заметного влияния на содержание различных изоформ в составе мышечных волокон (Aroniadou-Anderjaska et al., 1996). Вопрос о том, приводит ли повышение уровня СТГ к изменению соотношения изоформ МуНС в сторону увеличения быстрых изоформ миозина, требует дальнейших исследований.
 
=== Влияние гормонов щитовидной железы ===
1467
правок

Навигация