Спорт-вики — википедия научного бодибилдинга

Редактирование: Гормон инсулин

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
{{DISPLAYTITLE:Гормон инсулин - действие, эффекты, синтез, секреция}}
+
== Инсулин, пероральные сахаропонижающие средства, глюкагон и соматостатин ==
{{Клинфарм4}}
 
== Введение ==
 
  
Эта статья посвящена фармакологическому действию [[инсулин]]а, [[глюкагон]]а, [[соматостатин]]а и [[Пероральные сахаропонижающие средства|пероральных сахаропонижающих средств]]. Открытие инсулина в 1921 г. произвело переворот в медицине, дав средство для лечения инсулинозависимого сахарного диабета (сахарного диабета типа I) — болезни, которая считалась неизлечимой. В первой части главы описаны физиологические эффекты инсулина и механизмы его действия; тем самым обоснована роль этого гормона в лечении сахарного диабета. В следующей части дана фармакодинамика и фармакокинетика препаратов инсулина, рассмотрены преимущества интенсивной инсулинотерапии и ее роль в предупреждении хронических осложнений сахарного диабета. Далее описаны фармакологические свойства пероральных сахаропонижающих средств, без которых немыслимо лечение инсулинонезависимого сахарного диабета (сахарного диабета типа II) — самой распространенной формы заболевания. В конце главы рассказывается о физиологии и фармакологии глюкагона и соматостатина. Особое внимание уделено все более широкому применению аналогов соматостатина в клинической практике.
+
Эта статья посвящена фармакологическому действию инсулина, глюкагона, соматостатина и пероральных сахаропонижающих средств. Открытие инсулина в 1921 г. произвело переворот в медицине, дав средство для лечения инсулинозависимого сахарного диабета (сахарного диабета типа I) — болезни, которая считалась неизлечимой. В первой части главы описаны физиологические эффекты инсулина и механизмы его действия; тем самым обоснована роль этого гормона в лечении сахарного диабета. В следующей части дана фармакодинамика и фармакокинетика препаратов инсулина, рассмотрены преимущества интенсивной инсулинотерапии и ее роль в предупреждении хронических осложнений сахарного диабета. Далее описаны фармакологические свойства пероральных сахаропонижающих средств, без которых немыслимо лечение инсулинонезависимого сахарного диабета (сахарного диабета типа II) — самой распространенной формы заболевания. В конце главы рассказывается о физиологии и фармакологии глюкагона и соматостатина. Особое внимание уделено все более широкому применению аналогов соматостатина в клинической практике.
  
 
== Инсулин ==
 
== Инсулин ==
Строка 9: Строка 7:
 
=== Историческая справка ===
 
=== Историческая справка ===
  
'''Открытие инсулина''' — одно из самых ярких в медицине. Честь открытия принадлежит Бантингу и Бесту, но без предшествующих трудов многих исследователей оно было бы немыслимым. В 1869 г. немецкий студент-медик Пауль Лангерганс обратил внимание, что поджелудочная железа состоит из двух групп клеток — ацинозных, секретируюших пищеварительные ферменты, и иных, собранных в так называемые островки. Лангерганс предположил, что островковые клетки выполняют какую-то особую функцию. О том, какова эта функция, догадались только в 1889 г., когда Оскар Минковски и Йозеф фон Меринг описали у подвергнутых панкреатэктомии собак синдром, похожий на сахарный диабет (Minkowski, 1989).
+
Открытие инсулина — одно из самых ярких в медицине. Честь открытия принадлежит Бантингу и Бесту, но без предшествующих трудов многих исследователей оно было бы немыслимым. В 1869 г. немецкий студент-медик Пауль Лангерганс обратил внимание, что поджелудочная железа состоит из двух групп клеток — ацинозных, секретируюших пищеварительные ферменты, и иных, собранных в так называемые островки. Лангерганс предположил, что островковые клетки выполняют какую-то особую функцию. О том, какова эта функция, догадались только в 1889 г., когда Оскар Минковски и Йозеф фон Меринг описали у подвергнутых панкреатэктомии собак синдром, похожий на сахарный диабет (Minkowski, 1989).
  
 
Затем последовало множество попыток выделить из поджелудочной железы вещество, регулирующее уровень глюкозы в крови. В начале 1900-х гг. немецкий терапевт Георг Людвиг Цюльцер решился ввести вытяжку из поджелудочной железы умирающему от сахарного диабета больному. Больному стало лучше, но ненадолго: когда запасы вытяжки закончились, он впал в кому и скончался. Еще одна попытка найти антидиабетический фактор была предпринята в 1911 г. Э. Л. Скоттом, студентом Чикагского университета. Он лечил собак с экспериментальным сахарным диабетом с помощью спиртового экстракта поджелудочной железы (кстати, почти такого же, какой впоследствии использовали Бантинг и Бест). Однако научный руководитель Скотта счел эти эксперименты неубедительными, поскольку тот не проводил измерений уровня глюкозы в крови. С 1916 по 1920 г. румынский физиолог Николае Паулеску поставил серию опытов, в которых показал, что введение вытяжки из поджелудочной железы собакам с экспериментальным сахарным диабетом снижает содержание глюкозы и кетоновых тел в моче. Несмотря на то что эти результаты были опубликованы, работу Паулеску оценили по достоинству только много лет спустя.
 
Затем последовало множество попыток выделить из поджелудочной железы вещество, регулирующее уровень глюкозы в крови. В начале 1900-х гг. немецкий терапевт Георг Людвиг Цюльцер решился ввести вытяжку из поджелудочной железы умирающему от сахарного диабета больному. Больному стало лучше, но ненадолго: когда запасы вытяжки закончились, он впал в кому и скончался. Еще одна попытка найти антидиабетический фактор была предпринята в 1911 г. Э. Л. Скоттом, студентом Чикагского университета. Он лечил собак с экспериментальным сахарным диабетом с помощью спиртового экстракта поджелудочной железы (кстати, почти такого же, какой впоследствии использовали Бантинг и Бест). Однако научный руководитель Скотта счел эти эксперименты неубедительными, поскольку тот не проводил измерений уровня глюкозы в крови. С 1916 по 1920 г. румынский физиолог Николае Паулеску поставил серию опытов, в которых показал, что введение вытяжки из поджелудочной железы собакам с экспериментальным сахарным диабетом снижает содержание глюкозы и кетоновых тел в моче. Несмотря на то что эти результаты были опубликованы, работу Паулеску оценили по достоинству только много лет спустя.
Строка 19: Строка 17:
 
В 1923 г., с удивительной быстротой, Бантинг и Маклеод были удостоены Нобелевской премии по физиологии и медицине, и сразу же вокруг нее закипели страсти. Бантинг заявил, что свою половину премии он разделит с Бестом. Маклеод поделился с Колл и пом. История открытия инсулина подробно описана Блиссом (Bliss, 1982).
 
В 1923 г., с удивительной быстротой, Бантинг и Маклеод были удостоены Нобелевской премии по физиологии и медицине, и сразу же вокруг нее закипели страсти. Бантинг заявил, что свою половину премии он разделит с Бестом. Маклеод поделился с Колл и пом. История открытия инсулина подробно описана Блиссом (Bliss, 1982).
  
== Строение инсулина ==
+
== Строение ==
  
 
Несколько лет спустя Абель получил чистый кристаллический инсулин, но аминокислотная последовательность этого гормона была расшифрована Сэнгером только в I960 г. В 1963 г. был синтезирован искусственный инсулин, а в 1972 г. Ходжкин с коллегами установил его пространственную структуру. Инсулин был первым гормоном, который стали определять с помощью РИА (Yalow, 1978).
 
Несколько лет спустя Абель получил чистый кристаллический инсулин, но аминокислотная последовательность этого гормона была расшифрована Сэнгером только в I960 г. В 1963 г. был синтезирован искусственный инсулин, а в 1972 г. Ходжкин с коллегами установил его пространственную структуру. Инсулин был первым гормоном, который стали определять с помощью РИА (Yalow, 1978).
  
Бета-клетки островков поджелудочной железы синтезируют инсулин из препроинсулина — одноцепочечного белка-предшественника, состоящего из 110 аминокислотных остатков. После переноса через мембрану шероховатого эндоплазматического ретикулума от препроинсулина отщепляется кислый N-концевой сигнальный пептид из 24 аминокислотных остатков, и образуется проинсулин (рис. 61.1)[[Image:Gm61_1.jpg|250px|thumb|right|Рисунок 61.1. Человеческий проинсулин и его превращение в инсулин.]]. На этом этапе образуются дисульфидные связи, и молекула приобретает третичную структуру. В аппарате Гольджи от человеческого проинсулина протеазы отщепляют четыре основных аминокислотных остатка и соединительное звено — С-пептид. В результате получаются две пептидные цепи (А и В), вместе составляющие молекулу инсулина. Каждая из цепей содержит по одной дисульфидной связи, между собой они соединены еще двумя. A-цепь обычно содержит 21 аминокислотный остаток, В-цепь — 30; молекулярная масса инсулина равна 5734. Аминокислотная послеловательность инсулина считается консервативной, но в ходе эволюции с ней происходили существенные изменения, отразившиеся на биологической активности и иммуногенности этого гормона (De Meyts, 1994). У большинства видов имеется один ген инсулина, кодирующий один белок. Исключение составляют крысы и мыши, имеющие по два гена инсулина. У них образуются по два инсулина, различающихся двумя аминокислотными остатками В-цепи.
+
Бета-клетки островков поджелудочной железы синтезируют инсулин из препроинсулина — одноцепочечного белка-предшественника, состоящего из 110 аминокислотных остатков. После переноса через мембрану шероховатого эндоплазматического ретикулума от препроинсулина отщепляется кислый N-концевой сигнальный пептид из 24 аминокислотных остатков, и образуется проинсулин (рис. 61.1). На этом этапе образуются дисульфидные связи, и молекула приобретает третичную структуру. В аппарате Гольджи от человеческого проинсулина протеазы отщепляют четыре основных аминокислотных остатка и соединительное звено — С-пептид. В результате получаются две пептидные цепи (А и В), вместе составляющие молекулу инсулина. Каждая из цепей содержит по одной дисульфидной связи, между собой они соединены еще двумя. A-цепь обычно содержит 21 аминокислотный остаток, В-цепь — 30; молекулярная масса инсулина равна 5734. Аминокислотная послеловательность инсулина считается консервативной, но в ходе эволюции с ней происходили существенные изменения, отразившиеся на биологической активности и иммуногенности этого гормона (De Meyts, 1994). У большинства видов имеется один ген инсулина, кодирующий один белок. Исключение составляют крысы и мыши, имеющие по два гена инсулина. У них образуются по два инсулина, различающихся двумя аминокислотными остатками В-цепи.
  
 
Кристаллическая структура инсулина к настоящему времени изучена с разрешением 0,15 нм. Обе цепи гормона имеют весьма упорядоченную структуру с несколькими а-спиральными участками. По отдельности цепи инсулина биологической активностью не обладают. В растворе инсулин может существовать как мономер, димер или гексамер. Гексамер образуется с участием двух ионов Zn +; полагают, что именно в этой форме инсулин хранится в секреторных гранулах β-клеток. По-видимому, Zn + играет ведущую роль в формировании кристаллов инсулина, а кристаллизация ускоряет процесс превращения проинсулина в инсулин и облегчает хранение гормона. Большинство препаратов инсулина содержат высококонцентрированный раствор гексамеров гормона. После того как препарат инсулина всосался и его концентрация упала до физиологической (наномолярной), гормон распадается на мономеры, которые и обладают биологической активностью. В последнее время появились препараты инсулина, содержащие мономеры гормона.
 
Кристаллическая структура инсулина к настоящему времени изучена с разрешением 0,15 нм. Обе цепи гормона имеют весьма упорядоченную структуру с несколькими а-спиральными участками. По отдельности цепи инсулина биологической активностью не обладают. В растворе инсулин может существовать как мономер, димер или гексамер. Гексамер образуется с участием двух ионов Zn +; полагают, что именно в этой форме инсулин хранится в секреторных гранулах β-клеток. По-видимому, Zn + играет ведущую роль в формировании кристаллов инсулина, а кристаллизация ускоряет процесс превращения проинсулина в инсулин и облегчает хранение гормона. Большинство препаратов инсулина содержат высококонцентрированный раствор гексамеров гормона. После того как препарат инсулина всосался и его концентрация упала до физиологической (наномолярной), гормон распадается на мономеры, которые и обладают биологической активностью. В последнее время появились препараты инсулина, содержащие мономеры гормона.
Строка 32: Строка 30:
  
 
Рецепторы инсулина и ИФР-I тоже сходны по структуре (Duronio and Jacobs, 1988). Поэтому инсулин хоть и с низким сродством, но связывается с рецептором ИФР-I, а ИФР-1 — с рецептором инсулина. Полагают, что стимулирующее действие инсулина на пролиферацию клеток, по крайней мере отчасти, опосредовано рецептором ИФР-I. Метаболическая и митогенная активность аналогов инсулина не всегда коррелируют. Например, метаболическая активность проинсулина в 50 раз меньше, чем инсулина, а митогенная — всего в 2 раза меньше (King and Kahn, 1981). Это нужно учитывать при выборе препарата инсулина, поскольку стимулирующее действие на пролиферацию клеток повышает риск атеросклероза.
 
Рецепторы инсулина и ИФР-I тоже сходны по структуре (Duronio and Jacobs, 1988). Поэтому инсулин хоть и с низким сродством, но связывается с рецептором ИФР-I, а ИФР-1 — с рецептором инсулина. Полагают, что стимулирующее действие инсулина на пролиферацию клеток, по крайней мере отчасти, опосредовано рецептором ИФР-I. Метаболическая и митогенная активность аналогов инсулина не всегда коррелируют. Например, метаболическая активность проинсулина в 50 раз меньше, чем инсулина, а митогенная — всего в 2 раза меньше (King and Kahn, 1981). Это нужно учитывать при выборе препарата инсулина, поскольку стимулирующее действие на пролиферацию клеток повышает риск атеросклероза.
 +
 +
Рисунок 61.1. Человеческий проинсулин и его превращение в инсулин. Показана аминокислотная последовательность человеческого инсулина. Под действием протеаз от проинсулина отщепляются четыре основных аминокислотных остатка (31, 32, 64 и 65-й) и соединительное звено — С-пептид. Показаны места действия прогормон-конвертаз 2 и 3 (ПГК2 и ПГКЗ).
  
 
== Метаболизм инсулина ==
 
== Метаболизм инсулина ==
  
 
=== Синтез и секреция ===
 
=== Синтез и секреция ===
[[Image:Bio_wiki_24_1.jpg|250px|thumb|right|В бета-клетках при метаболизме глюкозы образуется АТФ, которая стимулирует секрецию инсулина]]
+
 
 
Синтез, запасание и секреция инсулина β-клетками, а также инактивация гормона в тканях-мишенях подробно изучены на клеточном и молекулярном уровнях. Более того, эти сведения послужили основой для изучения секреторной активности других островковых клеток (Orci, 1986). Островки поджелудочной железы содержат клетки четырех типов, которые синтезируют и секретируют разные пептидные гормоны: β-клетки — инсулин, а-клетки — глюкагон, 5-клетки — соматостатин, а РР-клетки (они же F-клетки) — панкреатический полипептид. На долю β-клеток приходится 60—80% массы островка, они составляют его ядро. Альфа-, 8- и РР-клетки формируют вокруг ядра мантию толщиной в 1—3 клетки.
 
Синтез, запасание и секреция инсулина β-клетками, а также инактивация гормона в тканях-мишенях подробно изучены на клеточном и молекулярном уровнях. Более того, эти сведения послужили основой для изучения секреторной активности других островковых клеток (Orci, 1986). Островки поджелудочной железы содержат клетки четырех типов, которые синтезируют и секретируют разные пептидные гормоны: β-клетки — инсулин, а-клетки — глюкагон, 5-клетки — соматостатин, а РР-клетки (они же F-клетки) — панкреатический полипептид. На долю β-клеток приходится 60—80% массы островка, они составляют его ядро. Альфа-, 8- и РР-клетки формируют вокруг ядра мантию толщиной в 1—3 клетки.
  
Строка 43: Строка 43:
 
Как уже говорилось, инсулин образуется из одноцепочечного предшественника, в котором А- и В-цепи соединены С-пеп-тидом. В процессе трансляции возникает препроинсулин, содержащий дополнительно сигнальную последовательность из 24 гидрофобных аминокислотных остатков на N-конце В-цепи. Сигнальная последовательность нужна для проникновения образующегося препроинсулина в просвет шероховатого эндо-плазматического ретикулума, где сигнальная последовательность сразу же отщепляется, а проинсулин в мелких везикулах транспортируется в аппарат Гольджи. Здесь он упаковывается в секреторные гранулы вместе с ферментами, необходимыми для его превращения в инсулин (Orci, 1986).
 
Как уже говорилось, инсулин образуется из одноцепочечного предшественника, в котором А- и В-цепи соединены С-пеп-тидом. В процессе трансляции возникает препроинсулин, содержащий дополнительно сигнальную последовательность из 24 гидрофобных аминокислотных остатков на N-конце В-цепи. Сигнальная последовательность нужна для проникновения образующегося препроинсулина в просвет шероховатого эндо-плазматического ретикулума, где сигнальная последовательность сразу же отщепляется, а проинсулин в мелких везикулах транспортируется в аппарат Гольджи. Здесь он упаковывается в секреторные гранулы вместе с ферментами, необходимыми для его превращения в инсулин (Orci, 1986).
  
Превращение проинсулина в инсулин начинается в аппарате Гольджи и продолжается в секреторных гранулах, практически завершаясь к моменту секреции. Таким образом, в кровоток попадают эквимолярные количества С-пептида и инсулина. Какие биологические функции выполняет С-пептид, пока не известно, однако он служит надежным маркером секреции инсулина (Polonsky and Rubenstein, 1986). Кроме того, из β-клеток высвобождаются малые количества проинсулина и дез-31,32-проинсулина. Это может объясняться либо экзоцитозом гранул, в которых превращение проинсулина в инсулин еще не завершилось, либо наличием дополнительного механизма секреции. Поскольку Я проинсулина в кровотоке намного больше, чем Т1/2 инсулина, до 20% иммунореактивного инсулина плазмы на самом деле представляют собой проинсулин и промежуточные продукты его превращения в инсулин.[[Image:Gm61_2.jpg|250px|thumb|right|Рисунок 61.2. Пространственная структура инсулина.]]
+
Превращение проинсулина в инсулин начинается в аппарате Голыши и продолжается в секреторных гранулах, практически завершаясь к моменту секреции. Таким образом, в кровоток попадают эквимолярные количества С-пептида и инсулина. Какие биологические функции выполняет С-пептид, пока не известно, однако он служит надежным маркером секреции инсулина (Polonsky and Rubenstein, 1986). Кроме того, из β-клеток высвобождаются малые количества проинсулина и дез-31,32-проинсулина. Это может объясняться либо экзоцитозом гранул, в которых превращение проинсулина в инсулин еще не завершилось, либо наличием дополнительного механизма секреции. Поскольку Я проинсулина в кровотоке намного больше, чем Т1/2 инсулина, до 20% иммунореактивного инсулина плазмы на самом деле представляют собой проинсулин и промежуточные продукты его превращения в инсулин.
 +
 
 +
Рисунок 61.2. Пространственная структура инсулина. Заштрихованная область соответствует участку связывания с рецептором. Pullen etal., 1976.
 +
 
  
 
Превращение проинсулина в инсулин осуществляют две Са2+-зависимые эндопептидазы, обнаруженные в секреторных гранулах островковых и других нейроэндокринных клеток. Эти эндопептидазы — прогормон-конвертазы 2 и 3 — имеют активный центр, сходный с таковым субтилизина, и расщепляют связи Лиз—Apr и Apr—Apr (Steiner et al., 1992). Прогормон-конвертаза 2 расщепляет только место соединения С-пептида с A-цепью. Прогормон-конвертаза 3 расщепляет преимущественно место соединения С-пептида с В-цепью, но может также действовать на точку приложения прогормон-конвертазы 2. Хотя данное семейство эндопротеаз включает в себя как минимум еще два белка (прогормон-конвертазу 1 и фурин), за превращение проинсулина в инсулин ответственны, очевидно, только прогормон-конвертазы 2 и 3.
 
Превращение проинсулина в инсулин осуществляют две Са2+-зависимые эндопептидазы, обнаруженные в секреторных гранулах островковых и других нейроэндокринных клеток. Эти эндопептидазы — прогормон-конвертазы 2 и 3 — имеют активный центр, сходный с таковым субтилизина, и расщепляют связи Лиз—Apr и Apr—Apr (Steiner et al., 1992). Прогормон-конвертаза 2 расщепляет только место соединения С-пептида с A-цепью. Прогормон-конвертаза 3 расщепляет преимущественно место соединения С-пептида с В-цепью, но может также действовать на точку приложения прогормон-конвертазы 2. Хотя данное семейство эндопротеаз включает в себя как минимум еще два белка (прогормон-конвертазу 1 и фурин), за превращение проинсулина в инсулин ответственны, очевидно, только прогормон-конвертазы 2 и 3.
  
=== Регуляция секреции инсулина ===
+
=== Регуляция секреции ===
  
Секреция инсулина регулируется настолько четко и слаженно, что и натощак, и во время еды в крови поддерживается постоянный уровень глюкозы. В регуляции участвуют питательные вещества, гормоны, вырабатываемые поджелудочной железой и ЖКТ, а также медиаторы вегетативной нервной системы. Глюкоза, аминокислоты, жирные кислоты и кетоновые тела стимулируют секрецию инсулина. Островки поджелудочной железы имеют богатую адренергическую и холинергическую иннервацию. Стимуляция а2-адренорецепторов ведет к подавлению секреции инсулина, а стимуляция β2-адре-норецепторов и блуждающего нерва — к усилению. Любое воздействие, повышающее симпатический тонус (гипоксия, переохлаждение, хирургическое вмешательство, ожоги), сопровождается снижением секреции инсулина за счет активации а2-адренорецепторов. Соответственно, а2-адреноблокаторы увеличивают базальный уровень инсулина в плазме, а β2-адреноблокаторы уменьшают его (Porte and Halter, 1981).
+
Секреция инсулина регулируется настолько четко и слаженно, что и натощак, и во время еды в крови поддерживается постоянный уровень глюкозы. В регуляции участвуют питательные вещества, гормоны, вырабатываемые поджелудочной железой и ЖКТ, а также медиаторы вегетативной нервной системы. Глюкоза, аминокислоты, жирные кислоты и кетоновые тела стимулируют секрецию инсулина. Островки поджелудочной железы имеют богатую адренергическую и холинергическую иннервацию. Стимуляция а2-адренореиепторов ведет к подавлению секреции инсулина, а стимуляция β2-адре-норецепторов и блуждающего нерва — к усилению. Любое воздействие, повышающее симпатический тонус (гипоксия, переохлаждение, хирургическое вмешательство, ожоги), сопровождается снижением секреции инсулина за счет активации а2-адренорецепторов. Соответственно, а2-адреноблокаторы увеличивают базальный уровень инсулина в плазме, а β2-адреноблокаторы уменьшают его (Porte and Halter, 1981).
  
 
Главным стимулятором секреции инсулина служит глюкоза, ее присутствие необходимо и для действия других стимуляторов (Matschinsky, 1996). Глюкоза сильнее стимулирует секрецию инсулина, когда ее принимают внутрь, чем при в/в введении. Действительно, прием пиши (и в ее составе — глюкозы) ведет к выбросу гормонов ЖКТ и активации блуждающего нерва (Malaisse, 1986; Brelje and Sorenson, 1988). Среди гормонов ЖКТ, стимулирующих секрецию инсулина, ведущая роль принадлежит гастроингибирующему пептиду и глюкагоноподобному пептиду типа 1; менее сильные стимуляторы — гастрин, секретин, хо-лецистокинин, ВИП, гастрин-высвобождающий пептид и оксинтомодулин (Ebert and Creutzfeldt, 1987).
 
Главным стимулятором секреции инсулина служит глюкоза, ее присутствие необходимо и для действия других стимуляторов (Matschinsky, 1996). Глюкоза сильнее стимулирует секрецию инсулина, когда ее принимают внутрь, чем при в/в введении. Действительно, прием пиши (и в ее составе — глюкозы) ведет к выбросу гормонов ЖКТ и активации блуждающего нерва (Malaisse, 1986; Brelje and Sorenson, 1988). Среди гормонов ЖКТ, стимулирующих секрецию инсулина, ведущая роль принадлежит гастроингибирующему пептиду и глюкагоноподобному пептиду типа 1; менее сильные стимуляторы — гастрин, секретин, хо-лецистокинин, ВИП, гастрин-высвобождающий пептид и оксинтомодулин (Ebert and Creutzfeldt, 1987).
Строка 63: Строка 66:
 
Большинство питательных веществ и гормонов, стимулирующих секрецию инсулина, усиливают и биосинтез этого гормона (Gold et al., 1982). Хотя синтез и секреция инсулина тесно связаны между собой, существуют факторы, которые влияют на один процесс, не затрагивая другой. Примером может служить снижение внутриклеточной концентрации Са2+, которое ингибирует секрецию, но не влияет на синтез инсулина.
 
Большинство питательных веществ и гормонов, стимулирующих секрецию инсулина, усиливают и биосинтез этого гормона (Gold et al., 1982). Хотя синтез и секреция инсулина тесно связаны между собой, существуют факторы, которые влияют на один процесс, не затрагивая другой. Примером может служить снижение внутриклеточной концентрации Са2+, которое ингибирует секрецию, но не влияет на синтез инсулина.
  
Скорости секреции инсулина и глюкагона осгровковыми клетками обычно находятся в обратной зависимости друг от друга (Unger, 1985). Это связано с действием на а-клетки инсулина, а также глюкозы и других веществ (см. ниже). Кроме того, секрецию и инсулина, и глюкагона модулирует соматостатин — третий островковый гормон (см. ниже). Глюкагон вызывает выброс соматостатина, а соматостатин подавляет секрецию инсулина, что в физиологических условиях большой роли не играет. Кровь в островках течет от р-клеточного ядра к а- и 5-клеткам (Samols et al., 1986), поэтому инсулин может паракринно ингибировать секрецию глюкагона, а вот соматостатин, чтобы попасть к а- и β-клеткам, должен пройти оба круга кровообращения. Таким образом, инсулин регулирует секрецию глюкагона и панкреатического полипептида, тогда как роль соматосгатина остается неясной.
+
Скорости секреции инсулина и глюкагона осгровковыми клетками обычно находятся в обратной зависимости друг от друга (Unger, 1985). Это связано с действием на а-клетки инсулина, а также глюкозы и других веществ (см. ниже). Кроме того, секрецию и инсулина, и глюкагона модулирует соматостатин — третий островковый гормон (см. ниже). Глюкагон вызывает выброс соматостатина, а соматостатин подавляет секрецию инсулина, что в физиологических условиях большой роли не играет. Кровь в островках течет от р-клеточного ядра к а- и 5-клеткам (Samols et al., 1986), поэтому инсулин может паракринно ингибировать секрецию глюкагона, а вот соматостатин, чтобы попасть к а- и β-клеткам, должен пройти оба круга кровообращения. Таким образом, инсулин регулирует секрецию глюкагона и панкреатического полипептида, тогда как роль соматосгатина остается неясной.  
  
 
=== Распределение и инактивация ===
 
=== Распределение и инактивация ===
Строка 77: Строка 80:
 
Доля инсулина, разрушаемого после интернализации, зависит от типа клеток. Так, в гепатоцитах расщепляется более 50% попавшего внутрь клеток инсулина, а эндотелиальные клетки высвобождают неизмененным почти весь поглощенный ими гормон. По-видимому, инсулин просто транспортируется эндотелиальными клетками из крови во внеклеточное пространство (King and Johnson,1985).    Там, где эндотелиальные клетки соединены между собой плотными контактами (в частности, в мышечной и жировой ткани), такой транспорт, называемый трансцитозом, играет важнейшую роль в доставке инсулина к клеткам-мишеням.
 
Доля инсулина, разрушаемого после интернализации, зависит от типа клеток. Так, в гепатоцитах расщепляется более 50% попавшего внутрь клеток инсулина, а эндотелиальные клетки высвобождают неизмененным почти весь поглощенный ими гормон. По-видимому, инсулин просто транспортируется эндотелиальными клетками из крови во внеклеточное пространство (King and Johnson,1985).    Там, где эндотелиальные клетки соединены между собой плотными контактами (в частности, в мышечной и жировой ткани), такой транспорт, называемый трансцитозом, играет важнейшую роль в доставке инсулина к клеткам-мишеням.
  
В расщеплении инсулина участвуют несколько ферментов. Главный из них — цистеиновая металлопротеиназа, содержащаяся в гепатоцитах (Shii and Roth, 1986). Иммунологически сходные с ней белки обнаружены в мышцах, почках и головном мозге (Duckworth, 1988). Наибольшую активность по расщеплению инсулина проявляет цитозоль, поэтому возникает вопрос, каким же образом цитозольный фермент действует на заключенный в везикулы инсулин. В то же время эта активность обнаружена и в эндосомах (Hamel et al., 1991). Описан и другой фермент, расщепляющий инсулин (Authieret al., 1994). Распределение ролей между двумя ферментами остается под вопросом. Не исключено, что оба они участвуют в инактивации и других гормонов, в частности глюкагона.
+
В расщеплении инсулина участвуют несколько ферментов. Главный из них — цистеиновая металлопротеиназа, содержащаяся в гепатоцитах (Shii and Roth, 1986). Иммунологически сходные с ней белки обнаружены в мышцах, почках и головном
 
 
== Механизмы действия инсулина ==
 
 
 
''Читайте отдельную статью:'' [[Механизмы действия инсулина]]
 
 
 
== Читайте также ==
 
 
 
*[[Сахарный диабет - действие инсулина]]
 
*[[Инсулинотерапия (препараты инсулина)]]
 
*[[Побочные эффекты инсулина]]
 
*[[Пероральные сахаропонижающие средства]]
 
*[[Глюкагон]] - функции, синтез, действие
 
*[[Соматостатин]]
 
*[[Диазоксид]]
 
*[[Виды инсулина]]
 
*[[Инсулинозависимый диабет]]
 
*[[Сахарный диабет второго типа]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблон, используемый на этой странице: