Спорт-вики — википедия научного бодибилдинга

Редактирование: Спортивная адаптология

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 4: Строка 4:
 
''[[Селуянов Виктор Николаевич|В. Н. Селуянов]] Российский государственный университет физической культуры, спорта, молодежи и туризма, Россия''
 
''[[Селуянов Виктор Николаевич|В. Н. Селуянов]] Российский государственный университет физической культуры, спорта, молодежи и туризма, Россия''
  
'''Спортивная адаптология'''  - новое научное направление исследования морфологических, [[Биохимия мышечной деятельности|биохимических]], [[Физиология мышечной деятельности|физиологических]] и биомеханических изменений в организме спортсменов при выполнении тренировочных и соревновательных двигательных действий, а также долговременных последствий занятий спортом. Область научных исследований спортивной адаптологии - изучение целостного поведения систем и органов спортсменов при выполнении физических упражнений и в ходе восстановления. Основным методом исследований является имитационное (умозрительное и математическое) моделирование срочных и долговременных адаптационных процессов в организме спортсменов. Модели систем и органов спортсмена строятся с учетом экспериментальных данных об их строении и взаимосвязи, полученных всем научным сообществом, занимающимся решением проблем биологии человека.
+
'''Спортивная адаптология'''  - новое научное направление исследования морфологических, биохимических, физиологических и биомеханических изменений в организме спортсменов при выполнении тренировочных и соревновательных двигательных действий, а также долговременных последствий занятий спортом. Область научных исследований спортивной адаптологии - изучение целостного поведения систем и органов спортсменов при выполнении физических упражнений и в ходе восстановления. Основным методом исследований является имитационное (умозрительное и математическое) моделирование срочных и долговременных адаптационных процессов в организме спортсменов. Модели систем и органов спортсмена строятся с учетом экспериментальных данных об их строении и взаимосвязи, полученных всем научным сообществом, занимающимся решением проблем биологии человека.
  
 
Умозрительные и математические модели используются для описания явлений, имеющих место в практике спорта. Описание срочных и долговременных процессов при занятиях спортом относится к теории спортивной деятельности.
 
Умозрительные и математические модели используются для описания явлений, имеющих место в практике спорта. Описание срочных и долговременных процессов при занятиях спортом относится к теории спортивной деятельности.
Строка 40: Строка 40:
 
== Модели систем и органов организма спортсменов ==
 
== Модели систем и органов организма спортсменов ==
  
Развитие науки приводит к появлению моделей объекта исследования, с помощью которых познаются новые свойства или разрабатываются инновационные технологии, создается теория. Для строго научного объяснения механизмов функционирования спортсмена необходимо построить модель идеальной клетки, мышечного волокна, [[Мышцы - анатомия и функции|мышцы]], [[Нервно-мышечная передача|нервно-мышечного аппарата]], [[Сердечно-сосудистая система|сердечно-сосудистой системы]], [[Дыхательная система|дыхательной системы]], [[Эндокриная система, спорт и двигательная активность|эндокринной]], [[Иммунная система|иммунной]], [[Пищеварительная система|пищеварительной]] и др. Сложность моделей должна быть адекватна решаемым задачам - объяснение явлений [[Адаптация|адаптации]] организма спортсменов в результате выполнения тренировочных и соревновательных нагрузок.
+
Развитие науки приводит к появлению моделей объекта исследования, с помощью которых познаются новые свойства или разрабатываются инновационные технологии, создается теория. Для строго научного объяснения механизмов функционирования спортсмена необходимо построить модель идеальной клетки, мышечного волокна, мышцы, нервно-мышечного аппарата, сердечно-сосудистой системы, дыхательной системы, эндокринной, иммунной, пищеварительной и др. Сложность моделей должна быть адекватна решаемым задачам - объяснение явлений адаптации организма спортсменов в результате выполнения тренировочных и соревновательных нагрузок.
  
 
=== Идеальная клетка (мышечное волокно) ===  
 
=== Идеальная клетка (мышечное волокно) ===  
Строка 128: Строка 128:
 
Активность ГМВ приводит к накоплению в саркоплазме продуктов метаболизма Н, Кр, Ф, лактата, пирувата и др.
 
Активность ГМВ приводит к накоплению в саркоплазме продуктов метаболизма Н, Кр, Ф, лактата, пирувата и др.
  
Запасов миофибриллярных АТФ хватает на 1-2 с, КрФ - 5-20 с (в зависимости от режима сокращения и расслабления MB). Затем усиливается гликолиз, но мощность его не более 50% от максимума, а из-за накопления ионов водорода нарушается процесс образования актин-миозиновых мостиков, и через 30 с они практически полностью перестают образовываться. Это явление обычно определяют как локальное [[мышечное утомление]]. ГМВ определяют как утомляемые MB.
+
Запасов миофибриллярных АТФ хватает на 1-2 с, КрФ - 5-20 с (в зависимости от режима сокращения и расслабления MB). Затем усиливается гликолиз, но мощность его не более 50% от максимума, а из-за накопления ионов водорода нарушается процесс образования актин-миозиновых мостиков, и через 30 с они практически полностью перестают образовываться. Это явление обычно определяют как локальное мышечное утомление. ГМВ определяют как утомляемые MB.
  
 
ОМВ устроены точно также как и ГМВ. Основное различие связано с массой митохондрий. В ОМВ масса митохондрий находится в предельном соотношении с миофибриллами, что обеспечивает максимальное потребление кислорода одним килограммом ОМВ около 0,3 л/мин.
 
ОМВ устроены точно также как и ГМВ. Основное различие связано с массой митохондрий. В ОМВ масса митохондрий находится в предельном соотношении с миофибриллами, что обеспечивает максимальное потребление кислорода одним килограммом ОМВ около 0,3 л/мин.
Строка 186: Строка 186:
 
Увеличение мощности АнП, иначе говоря, рост митохондриальной массы ОМВ, приводит к адаптационным процессам - увеличению количества капилляров и их плотности (последнее вызывает увеличение транзитного времени крови). Это дает основание к предположению, что увеличение мощности АнП одновременно говорит о росте как массы ОМВ, так и степени капилляризации ОМВ.
 
Увеличение мощности АнП, иначе говоря, рост митохондриальной массы ОМВ, приводит к адаптационным процессам - увеличению количества капилляров и их плотности (последнее вызывает увеличение транзитного времени крови). Это дает основание к предположению, что увеличение мощности АнП одновременно говорит о росте как массы ОМВ, так и степени капилляризации ОМВ.
  
Косвенную оценку состояния [[Сердечно-сосудистая система|сердечно-сосудистой системы]] можно дать по результатам ступенчатого теста. Анализ взаимосвязей между выполняемой мощностью и ЧСС, потреблением кислорода, легочной вентиляцией показал наличие линейной зависимости до момента появления аэробного порога. В тесте на велоэргометре при КПД = 23% каждый лито потребленного кислорода соответствует 20 л/мин легочной вентиляции, 75-80 Вт мощности. Если учесть, что к активным мышцам кровь приходит при любой допороговой мощности с одинаковой концентрацией кислорода, то концентрация кислорода и углекислого газа в венозной крови будет зависеть от мощности функционирования мышцы и объемной скорости кровотока. Судя по имеющимся данным, изменение размеров сердца не влияет на объемную скорость кровотока в мышце, однако частота сердечных сокращений на стандартной нагрузке снижается. Следовательно, по ЧСС на стандартной допороговой нагрузке можно судить об [[Ударный объем сердца|ударном объеме сердца]], иначе говоря, об объеме левого желудочка и силе миокарда.
+
Косвенную оценку состояния [[Сердечно-сосудистая система|сердечно-сосудистой системы]] можно дать по результатам ступенчатого теста. Анализ взаимосвязей между выполняемой мощностью и ЧСС, потреблением кислорода, легочной вентиляцией показал наличие линейной зависимости до момента появления аэробного порога. В тесте на велоэргометре при КПД = 23% каждый лито потребленного кислорода соответствует 20 л/мин легочной вентиляции, 75-80 Вт мощности. Если учесть, что к активным мышцам кровь приходит при любой допороговой мощности с одинаковой концентрацией кислорода, то концентрация кислорода и углекислого газа в венозной крови будет зависеть от мощности функционирования мышцы и объемной скорости кровотока. Судя по имеющимся данным, изменение размеров сердца не влияет на объемную скорость кровотока в мышце, однако частота сердечных сокращений на стандартной нагрузке снижается. Следовательно, по ЧСС на стандартной допороговой нагрузке можно судить об ударном объеме сердца, иначе говоря, об объеме левого желудочка и силе миокарда.
  
 
Для определения функциональных возможностей эндокринной и иммунной систем пока не разработано тестов. Существуют попытки определения реактивности иммунной системы по реакции антител человека на чужеродный белок - бараньи эритроциты. Однако этот метод трудоемок, требует взятия пробы крови, в тренерской практике мало пригоден.
 
Для определения функциональных возможностей эндокринной и иммунной систем пока не разработано тестов. Существуют попытки определения реактивности иммунной системы по реакции антител человека на чужеродный белок - бараньи эритроциты. Однако этот метод трудоемок, требует взятия пробы крови, в тренерской практике мало пригоден.
Строка 200: Строка 200:
 
Функцией сердца является ритмическое нагнетание в артерии крови. Сокращение MB (миокардиоцитов) стенок предсердий и желудочков называют систолой, а расслабление - диастолой.
 
Функцией сердца является ритмическое нагнетание в артерии крови. Сокращение MB (миокардиоцитов) стенок предсердий и желудочков называют систолой, а расслабление - диастолой.
  
Количество крови, выбрасываемое левым желудочком сердца в минуту, называется [[Минутный объем сердца (МОС)|минутным объемом кровотока (МОК)]]. В покое он составляет в норме 4-5 л/мин. Разделив МОК на ЧСС, можно получить ударный объем кровотока или сердца (УОС). В покое он составляет 60_70 мл крови за удар.
+
Количество крови, выбрасываемое левым желудочком сердца в минуту, называется минутным объемом кровотока (МОК). В покое он составляет в норме 4-5 л/мин. Разделив МОК на ЧСС, можно получить ударный объем кровотока или сердца (УОС). В покое он составляет 60_70 мл крови за удар.
  
 
Частота и сила сокращений зависит от нервной, гуморальной (адреналин) регуляции и биомеханических условий работы желудочков.
 
Частота и сила сокращений зависит от нервной, гуморальной (адреналин) регуляции и биомеханических условий работы желудочков.
Строка 239: Строка 239:
  
 
==== Упражнения максимальной мощности ====
 
==== Упражнения максимальной мощности ====
 
''Читайте также:'' [[Физические нагрузки максимальной мощности]]
 
  
 
'''Внешняя сторона физического упражнения'''  
 
'''Внешняя сторона физического упражнения'''  
Строка 289: Строка 287:
  
 
==== Упражнения околомаксимальной мощности====  
 
==== Упражнения околомаксимальной мощности====  
 
''Читайте также:'' [[Упражнения и нагрузки субмаксимальной мощности]]
 
  
 
'''Внешняя сторона физического упражнения'''
 
'''Внешняя сторона физического упражнения'''
Строка 340: Строка 336:
 
Таким образом, упражнения околомаксимальной анаэробной мощности, выполняемые до отказа, способствуют наращиванию массы миофибрилл в ПМВ и ГМВ, а при выполнении этих упражнений до легкого утомления (закисления) мышц, в интервалах отдыха активизируется окислительное фосфорилирование в митохондриях ПМВ и ГМВ (высокопороговые ДЕ могут не участвовать в работе, поэтому не вся мышца прорабатывается), что в итоге приведет к росту массы митохондрий в них.
 
Таким образом, упражнения околомаксимальной анаэробной мощности, выполняемые до отказа, способствуют наращиванию массы миофибрилл в ПМВ и ГМВ, а при выполнении этих упражнений до легкого утомления (закисления) мышц, в интервалах отдыха активизируется окислительное фосфорилирование в митохондриях ПМВ и ГМВ (высокопороговые ДЕ могут не участвовать в работе, поэтому не вся мышца прорабатывается), что в итоге приведет к росту массы митохондрий в них.
  
==== Упражнения субмаксимальной мощности ====
+
==== Упражнения субмаксимальной мощности =====
  
 
'''Внешняя сторона физического упражнения'''
 
'''Внешняя сторона физического упражнения'''
Строка 398: Строка 394:
 
Таким образом, упражнения субмаксимальной анаэробной мощности, выполняемые до отказа, приводят к чрезмерно большому закислению мышц, поэтому снижается масса миофибрилл и митохондрий в ПМВ и ГМВ, а при выполнении этих упражнений до легкого утомления (закисления) мышц в интервалах отдыха активизируется окислительное фосфорилирование в митохондриях в ПМВ и части ГМВ, что в итоге приведет к росту массы митохондрий в них.
 
Таким образом, упражнения субмаксимальной анаэробной мощности, выполняемые до отказа, приводят к чрезмерно большому закислению мышц, поэтому снижается масса миофибрилл и митохондрий в ПМВ и ГМВ, а при выполнении этих упражнений до легкого утомления (закисления) мышц в интервалах отдыха активизируется окислительное фосфорилирование в митохондриях в ПМВ и части ГМВ, что в итоге приведет к росту массы митохондрий в них.
  
=== [[Аэробные упражнения]] ===
+
==== Аэробные упражнения =====
  
 
Мощность нагрузки в этих упражнениях такова, что энергообеспечение рабочих мышц может происходить (главным образом или исключительно) за счет окислительных (аэробных) процессов, связанных с непрерывным потреблением организмом и расходованием работающими мышцами кислорода. Поэтому мощность в этих упражнениях можно оценивать по уровню (скорости) дистанционного потребления 02. Если дистанционное потребление 02 соотнести с предельной аэробной мощностью у данного человека (т. е. с его индивидуальным АнП), то можно получить представление об относительной аэробной физиологической мощности выполняемого им упражнения. По этому показателю среди аэробных циклических упражнений можно выделить пять групп: (1) упражнения максимальной аэробной мощности (100-110% АнП); (2) упражнения околомаксимальной аэробной мощности (90-100% АнП); (3) упражнения субмаксимальной аэробной мощности (80-90% МПК); (4) упражнения средней аэробной мощности (65-80% АнП); (5) упражнения малой аэробной мощности (65% от АнП и менее).
 
Мощность нагрузки в этих упражнениях такова, что энергообеспечение рабочих мышц может происходить (главным образом или исключительно) за счет окислительных (аэробных) процессов, связанных с непрерывным потреблением организмом и расходованием работающими мышцами кислорода. Поэтому мощность в этих упражнениях можно оценивать по уровню (скорости) дистанционного потребления 02. Если дистанционное потребление 02 соотнести с предельной аэробной мощностью у данного человека (т. е. с его индивидуальным АнП), то можно получить представление об относительной аэробной физиологической мощности выполняемого им упражнения. По этому показателю среди аэробных циклических упражнений можно выделить пять групп: (1) упражнения максимальной аэробной мощности (100-110% АнП); (2) упражнения околомаксимальной аэробной мощности (90-100% АнП); (3) упражнения субмаксимальной аэробной мощности (80-90% МПК); (4) упражнения средней аэробной мощности (65-80% АнП); (5) упражнения малой аэробной мощности (65% от АнП и менее).
Строка 447: Строка 443:
 
Существенного изменений в MB от таких тренировок не происходит. Эти тренировки могут использоваться для дилатации левого желудочка сердца, поскольку ЧСС составляет 100-150 уд./мин, т.е. ударный объем сердца максимальный.
 
Существенного изменений в MB от таких тренировок не происходит. Эти тренировки могут использоваться для дилатации левого желудочка сердца, поскольку ЧСС составляет 100-150 уд./мин, т.е. ударный объем сердца максимальный.
  
==== Упражнения средней аэробной мощности ====
+
Упражнения средней аэробной мощности Упражнения средней аэробной мощности обеспечиваются аэробными процессами. Основным энергетическим субстратом служат жиры рабочих мышц и крови, углеводы играют относительно меньшую роль (дыхательный коэффициент около 0,8). Предельная продолжительность упражнения г до нескольких часов.
 
 
Упражнения средней аэробной мощности обеспечиваются аэробными процессами. Основным энергетическим субстратом служат жиры рабочих мышц и крови, углеводы играют относительно меньшую роль (дыхательный коэффициент около 0,8). Предельная продолжительность упражнения - до нескольких часов.
 
  
 
Кардиореспираторные показатели не превышают 60-75% от максимальных для данного спортсмена. Во многом характеристики этих упражнений и упражнений предыдущей группы близки.
 
Кардиореспираторные показатели не превышают 60-75% от максимальных для данного спортсмена. Во многом характеристики этих упражнений и упражнений предыдущей группы близки.
  
==== Упражнения малой аэробной мощности ====
+
Упражнения малой аэробной мощности Упражнения малой аэробной мощности обеспечивается за счет окислительных процессов, в которых расходуются главным образом жиры и в меньшей степени углеводы (дыхательный коэффициент менее 0,8). Упражнения такой относительной физиологической мощности могут выполняться в течение многих часов. Это соответствует бытовой деятельности человека (ходьба) или упражнениям в системе занятий массовой или лечебной физической культурой.
 
 
Упражнения малой аэробной мощности обеспечивается за счет окислительных процессов, в которых расходуются главным образом жиры и в меньшей степени углеводы (дыхательный коэффициент менее 0,8). Упражнения такой относительной физиологической мощности могут выполняться в течение многих часов. Это соответствует бытовой деятельности человека (ходьба) или упражнениям в системе занятий массовой или лечебной физической культурой.
 
  
 
Долговременные адаптационные процессы практически не наблюдаются, поскольку соотношение между массой миофибрилл и митохондрий достигает предельного значения. Любая продолжительность тренировочных занятий не приводит к существенным адаптационным изменениям.
 
Долговременные адаптационные процессы практически не наблюдаются, поскольку соотношение между массой миофибрилл и митохондрий достигает предельного значения. Любая продолжительность тренировочных занятий не приводит к существенным адаптационным изменениям.
Строка 468: Строка 460:
  
 
Классификация физических упражнений по интенсивности метаболических процессов недостаточна для относительно полного представления о типах упражнений, которые могут использоваться в различных видах спорта. Классификация охватывает значительно больший объем пространства возможных физических упражнений, если производить классификацию по внешним признакам (интенсивность сокращения мышц, интенсивность упражнения, продолжительность упражнения, интервал отдыха, количество повторений и количество тренировок в микроцикле), по внутренним срочным адаптационным процессам (мышцы участвующие в упражнении, рекрутированные MB, активность биохимических процессов в ОМВ, ПМВ и ГМВ, реакция сердечно-сосудистой и дыхательной систем, эндокринной системы), по результатам долговременных адаптационных процессов (гиперплазия миофибрилл, митохондрий в ГМВ, ПМВ и ОМВ).
 
Классификация физических упражнений по интенсивности метаболических процессов недостаточна для относительно полного представления о типах упражнений, которые могут использоваться в различных видах спорта. Классификация охватывает значительно больший объем пространства возможных физических упражнений, если производить классификацию по внешним признакам (интенсивность сокращения мышц, интенсивность упражнения, продолжительность упражнения, интервал отдыха, количество повторений и количество тренировок в микроцикле), по внутренним срочным адаптационным процессам (мышцы участвующие в упражнении, рекрутированные MB, активность биохимических процессов в ОМВ, ПМВ и ГМВ, реакция сердечно-сосудистой и дыхательной систем, эндокринной системы), по результатам долговременных адаптационных процессов (гиперплазия миофибрилл, митохондрий в ГМВ, ПМВ и ОМВ).
 
== Читайте также ==
 
*[[Адаптивный спорт]]
 
*[[Спортивная рекордология]]
 
*[[Конфликтология: конфликты в спорте]]
 
*[[Спортивная биомеханика: методы исследования движений]]
 
*[[Кинезотерапия]]
 
*[[Спорт как зрелище]]
 
*[[Спорт для всех]]
 
*[[Профессиональный спорт: история и современное состояние]]
 
*[[Элитный спорт]]
 
*[[Этнокультурное многообразие спорта]]
 
*[[Детский спорт (проблема гуманизации)]]
 
*[[Спорт как социальный институт]]
 
*[[Спорт как сфера услуг]]
 
*[[Спорт и молодежные субкультуры]]
 
*[[Спорт и искусство]]
 
*[[Спорт для инвалидов и лиц с ограниченными возможностями]]
 
*[[Современные системы подготовки специалистов в области спорта]]
 
  
 
== Обозначения ==
 
== Обозначения ==

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблон, используемый на этой странице: