Спорт-вики — википедия научного бодибилдинга

Третичная и четвертичная структура белка — различия между версиями

Материал из SportWiki энциклопедии
Перейти к: навигация, поиск
(Новая страница: «== Третичная и четвертичная структура белка. Коллаген == Рис. 8.1. Третичная структура. β-Скл…»)
 
 
Строка 1: Строка 1:
== Третичная и четвертичная структура белка. Коллаген ==
+
== Третичная структура белка ==
Рис. 8.1. Третичная структура. β-Складчатые слои и а-спирали сворачиваются в пространстве с образованием двух разных мономеров креатинкиназы (КК-М и КК-В)
 
Рис. 8.2. Четвертичная структура. Два разных мономера креатинкиназы — КК-М и КК-В — связываются с образованием трех вариантов димеров. Это гомодимер КК-ММ (фермент скелетной мускулатуры), гомодимер КК-ВВ (фермент головного мозга) и гетеродимер КК-МВ (характерен для ткани сердечной мышцы)
 
Рис. 8.3. Гидроксилирование остатков лизина при образовании коллагена
 
=== Третичная структура белка ===
 
  
 
'''Третичная структура белка''' — это взаимное расположение в пространстве β-цепей, β-складчатых слоев и а-спиралей. Примеры различных способов укладки — мономеры креатинкиназы КК-М и КК-В (рис. 8.1).
 
'''Третичная структура белка''' — это взаимное расположение в пространстве β-цепей, β-складчатых слоев и а-спиралей. Примеры различных способов укладки — мономеры креатинкиназы КК-М и КК-В (рис. 8.1).
 
+
[[Image:Bio_wiki_8_1.jpg|250px|thumb|right|Рис. 8.1. Третичная структура. β-Складчатые слои и а-спирали сворачиваются в пространстве с образованием двух разных мономеров креатинкиназы (КК-М и КК-В)]]
 
=== Четвертичная структура белка ===
 
=== Четвертичная структура белка ===
  
 
Многие белки состоят из нескольких полипептидных цепей, которые связаны нековалентными связями. '''Мономером''' называется один отдельный белок, состоящий из одной полипептидной цепи. Когда мы говорим о четвертичной структуре белка, это означает, что в его состав входят несколько мономеров: 2 мономера образуют димер (рис. 8.2), три — '''тример''', четыре — '''тетрамер''' и т.д. '''Олигомеры''' состоят из большого числа мономеров.
 
Многие белки состоят из нескольких полипептидных цепей, которые связаны нековалентными связями. '''Мономером''' называется один отдельный белок, состоящий из одной полипептидной цепи. Когда мы говорим о четвертичной структуре белка, это означает, что в его состав входят несколько мономеров: 2 мономера образуют димер (рис. 8.2), три — '''тример''', четыре — '''тетрамер''' и т.д. '''Олигомеры''' состоят из большого числа мономеров.
 
+
[[Image:Bio_wiki_8_2.jpg|250px|thumb|none|<small>Рис. 8.2. Четвертичная структура. Два разных мономера креатинкиназы — КК-М и КК-В — связываются с образованием трех вариантов димеров. Это гомодимер КК-ММ (фермент скелетной мускулатуры), гомодимер КК-ВВ (фермент головного мозга) и гетеродимер КК-МВ (характерен для ткани сердечной мышцы)</small>]]
 
=== Коллаген ===
 
=== Коллаген ===
  
 
При кипячении соединительная ткань превращается в желатин, который можно использовать как клей. Отсюда и возникло название «[[коллаген]]» (по-гречески «kola» значит «клей»). На настоящий момент известно 19 разных типов коллагена. '''Коллагены''' — структурные белки соединительной ткани, самые многочисленные белки человеческого организма. Коллагены по-разному распределены в организме: так, коллаген I типа содержится главным образом в связках, сухожилиях и коже, а коллаген II типа — в хрящевой ткани. Структурные единицы коллагена — '''а-спирали''', которые скручиваются в '''тройную спираль'''. В первичной последовательности коллагена повторяется мотив '''-Гли-X-Y-'''. В этой последовательности X обычно представлен пролином. На месте Y чаще всего находится остаток пролина, гидроксилированный в витамин С-зависимой реакции: таким образом, Y представляет собой остаток '''гидроксипролина'''. В других случаях Y может быть представлен остатком '''гидроксилизина''' (рис 8.3). '''[[Глицин]]''' — необходимый компонент коллагена. Это самая маленькая аминокислота: ее радикал R представлен лишь одним атомом водорода. Пространство в тройной спирали ограничено, и другие, более крупные, молекулы аминокислот просто не могли бы там поместиться.
 
При кипячении соединительная ткань превращается в желатин, который можно использовать как клей. Отсюда и возникло название «[[коллаген]]» (по-гречески «kola» значит «клей»). На настоящий момент известно 19 разных типов коллагена. '''Коллагены''' — структурные белки соединительной ткани, самые многочисленные белки человеческого организма. Коллагены по-разному распределены в организме: так, коллаген I типа содержится главным образом в связках, сухожилиях и коже, а коллаген II типа — в хрящевой ткани. Структурные единицы коллагена — '''а-спирали''', которые скручиваются в '''тройную спираль'''. В первичной последовательности коллагена повторяется мотив '''-Гли-X-Y-'''. В этой последовательности X обычно представлен пролином. На месте Y чаще всего находится остаток пролина, гидроксилированный в витамин С-зависимой реакции: таким образом, Y представляет собой остаток '''гидроксипролина'''. В других случаях Y может быть представлен остатком '''гидроксилизина''' (рис 8.3). '''[[Глицин]]''' — необходимый компонент коллагена. Это самая маленькая аминокислота: ее радикал R представлен лишь одним атомом водорода. Пространство в тройной спирали ограничено, и другие, более крупные, молекулы аминокислот просто не могли бы там поместиться.
 +
[[Image:Bio_wiki_8_3.jpg|250px|thumb|none|Рис. 8.3. Гидроксилирование остатков лизина при образовании коллагена]]
 
==== Биосинтез коллагена ====
 
==== Биосинтез коллагена ====
 
+
[[Image:Bio_wiki_8_4.jpg|250px|thumb|right|Рис. 8.4. Биосинтез коллагена]]
 
Коллаген — нерастворимый гликопротеин внеклеточного матрикса. Каким же образом фибробласты — клетки, синтезирующие коллаген, образуют нерастворимый внеклеточный белок? Все дело в том, что синтез коллагена осуществляется в 2 '''стадии''': внутриклеточной и внеклеточной (рис. 8.4).
 
Коллаген — нерастворимый гликопротеин внеклеточного матрикса. Каким же образом фибробласты — клетки, синтезирующие коллаген, образуют нерастворимый внеклеточный белок? Все дело в том, что синтез коллагена осуществляется в 2 '''стадии''': внутриклеточной и внеклеточной (рис. 8.4).
  
Строка 25: Строка 22:
  
 
Проколлаген секретируется клеткой во внеклеточную жидкость. Фермент проколлагенпептидаза удаляет глобулярные пропептиды с N- и С-концевых участков молекул проколлагена, и образуется нерастворимый тропколлаген. Молекулы тропоколлагена объединяются в микрофибриллы, причем они располагаются в шахматном порядке так, что каждая молекула тропоколлагена перекрывается с соседними на четверть своей длины. Наконец, в присутствии лизиноксидазы остатки лизина и гидроксилизина реагируют друг с другом, формируя поперечные связи, что придает микрофибрилле прочность на растяжение, и микрофибриллы объединяются в одно полимерное коллагеновое волокно.
 
Проколлаген секретируется клеткой во внеклеточную жидкость. Фермент проколлагенпептидаза удаляет глобулярные пропептиды с N- и С-концевых участков молекул проколлагена, и образуется нерастворимый тропколлаген. Молекулы тропоколлагена объединяются в микрофибриллы, причем они располагаются в шахматном порядке так, что каждая молекула тропоколлагена перекрывается с соседними на четверть своей длины. Наконец, в присутствии лизиноксидазы остатки лизина и гидроксилизина реагируют друг с другом, формируя поперечные связи, что придает микрофибрилле прочность на растяжение, и микрофибриллы объединяются в одно полимерное коллагеновое волокно.
 
Рис. 8.4. Биосинтез коллагена
 
  
 
== Читайте также ==
 
== Читайте также ==
  
 
*[[Вторичная структура белка]]
 
*[[Вторичная структура белка]]

Текущая версия на 20:39, 15 мая 2016

Третичная структура белка[править | править код]

Третичная структура белка — это взаимное расположение в пространстве β-цепей, β-складчатых слоев и а-спиралей. Примеры различных способов укладки — мономеры креатинкиназы КК-М и КК-В (рис. 8.1).

Рис. 8.1. Третичная структура. β-Складчатые слои и а-спирали сворачиваются в пространстве с образованием двух разных мономеров креатинкиназы (КК-М и КК-В)

Четвертичная структура белка[править | править код]

Многие белки состоят из нескольких полипептидных цепей, которые связаны нековалентными связями. Мономером называется один отдельный белок, состоящий из одной полипептидной цепи. Когда мы говорим о четвертичной структуре белка, это означает, что в его состав входят несколько мономеров: 2 мономера образуют димер (рис. 8.2), три — тример, четыре — тетрамер и т.д. Олигомеры состоят из большого числа мономеров.

Рис. 8.2. Четвертичная структура. Два разных мономера креатинкиназы — КК-М и КК-В — связываются с образованием трех вариантов димеров. Это гомодимер КК-ММ (фермент скелетной мускулатуры), гомодимер КК-ВВ (фермент головного мозга) и гетеродимер КК-МВ (характерен для ткани сердечной мышцы)

Коллаген[править | править код]

При кипячении соединительная ткань превращается в желатин, который можно использовать как клей. Отсюда и возникло название «коллаген» (по-гречески «kola» значит «клей»). На настоящий момент известно 19 разных типов коллагена. Коллагены — структурные белки соединительной ткани, самые многочисленные белки человеческого организма. Коллагены по-разному распределены в организме: так, коллаген I типа содержится главным образом в связках, сухожилиях и коже, а коллаген II типа — в хрящевой ткани. Структурные единицы коллагена — а-спирали, которые скручиваются в тройную спираль. В первичной последовательности коллагена повторяется мотив -Гли-X-Y-. В этой последовательности X обычно представлен пролином. На месте Y чаще всего находится остаток пролина, гидроксилированный в витамин С-зависимой реакции: таким образом, Y представляет собой остаток гидроксипролина. В других случаях Y может быть представлен остатком гидроксилизина (рис 8.3). Глицин — необходимый компонент коллагена. Это самая маленькая аминокислота: ее радикал R представлен лишь одним атомом водорода. Пространство в тройной спирали ограничено, и другие, более крупные, молекулы аминокислот просто не могли бы там поместиться.

Рис. 8.3. Гидроксилирование остатков лизина при образовании коллагена

Биосинтез коллагена[править | править код]

Рис. 8.4. Биосинтез коллагена

Коллаген — нерастворимый гликопротеин внеклеточного матрикса. Каким же образом фибробласты — клетки, синтезирующие коллаген, образуют нерастворимый внеклеточный белок? Все дело в том, что синтез коллагена осуществляется в 2 стадии: внутриклеточной и внеклеточной (рис. 8.4).

На внутриклеточной стадии происходит синтез проколлагена

Сначала внутриклеточный белковый аппарат синтезирует полипептидные а-спирали (длиной примерно в 1000 аминокислот). Некоторые из остатков пролина и лизина гидроксилируются в ходе реакций, для которых необходим витамин С. Некоторые остатки гидроксилизина гликозилируются. Потом а-спирали объединяются, сплетаясь друг с другом, и образуют тройную спираль проколлагена, который является растворимым белком.

На внеклеточной стадии формируются коллагеновые волокна

Проколлаген секретируется клеткой во внеклеточную жидкость. Фермент проколлагенпептидаза удаляет глобулярные пропептиды с N- и С-концевых участков молекул проколлагена, и образуется нерастворимый тропколлаген. Молекулы тропоколлагена объединяются в микрофибриллы, причем они располагаются в шахматном порядке так, что каждая молекула тропоколлагена перекрывается с соседними на четверть своей длины. Наконец, в присутствии лизиноксидазы остатки лизина и гидроксилизина реагируют друг с другом, формируя поперечные связи, что придает микрофибрилле прочность на растяжение, и микрофибриллы объединяются в одно полимерное коллагеновое волокно.

Читайте также[править | править код]