Спорт-вики — википедия научного бодибилдинга

Гепарин — различия между версиями

Материал из SportWiki энциклопедии
Перейти к: навигация, поиск
(Новая страница: «{{Клинфарм3}} == Гепарин == '''Историческая справка'''. В 1916 г. студенту-медику Маклейну, изуча…»)
 
 
(не показано 6 промежуточных версий 3 участников)
Строка 2: Строка 2:
 
== Гепарин ==
 
== Гепарин ==
  
'''Историческая справка'''. В 1916 г. студенту-медику Маклейну, изучавшему природу растворимых в эфире прокоагулянтов, посчастливилось открыть фосфолипидный антикоагулянт. Вскоре после этого Говелл, в чьей лаборатории работал Маклейн, открыл водорастворимый гликозаминогликан, названный из-за высокого содержания в печени гепарином (Jaques, 1978). Успешное предотвращение гепарином свертывания in vitro привело позднее к его использованию для лечения венозных тромбозов.
+
'''Историческая справка'''. В 1916 г. студенту-медику Маклейну, изучавшему природу растворимых в эфире прокоагулянтов, посчастливилось открыть фосфолипидный [[Антикоагулянты прямого действия|антикоагулянт]]. Вскоре после этого Говелл, в чьей лаборатории работал Маклейн, открыл водорастворимый гликозаминогликан, названный из-за высокого содержания в печени гепарином (Jaques, 1978). Успешное предотвращение гепарином свертывания in vitro привело позднее к его использованию для [[Лечение тромбозов|лечения венозных тромбозов]].
  
 
=== Химические свойства и механизм действия ===  
 
=== Химические свойства и механизм действия ===  
  
Гепарин — гликозаминогликан, содержащийся в гранулах тучных клеток. В ходе его синтеза из различных УДФ-сахаров образуется полимер, состоящий из чередующихся остатков D-глюкуроновой кислоты и N-ацетил-глюкозамина (Bourin and Lindahl, 1993). Примерно 10— 15 таких гликозаминогликановых цепей (по 200—300 моносахаридов каждая) присоединяются к белковой части молекулы, образуя протеогликан с молекулярной массой 750 000—1 000 000. Затем происходит модификация гликозаминогликановых цепей: N-деацетилирование и N-cyльфатирование остатков глюкозамина, эпимеризация D-глюкуроновой кислоты в L-идуроновую, О-сульфати-рование остатков этих кислот в положении 2, О-сульфа-тирование остатков глюкозамина в положениях 3 и 6 (рис. 55.2). Так как эти реакции затрагивают не все моносахариды, структура получающихся молекул весьма разнообразна. Гликозаминогликановые цепи гепарина, перенесенного в гранулы тучных клеток, в течение нескольких часов расщепляются p-глюкуронидазой на фрагменты с молекулярной массой 5000—30 000 (в среднем около 12 000, то есть 40 моносахаридов).
+
'''Гепарин''' — гликозаминогликан, содержащийся в гранулах тучных клеток. В ходе его синтеза из различных УДФ-сахаров образуется полимер, состоящий из чередующихся остатков D-глюкуроновой кислоты и N-ацетил-глюкозамина (Bourin and Lindahl, 1993). Примерно 10— 15 таких гликозаминогликановых цепей (по 200—300 моносахаридов каждая) присоединяются к белковой части молекулы, образуя протеогликан с молекулярной массой 750 000—1 000 000. Затем происходит модификация гликозаминогликановых цепей: N-деацетилирование и N-cyльфатирование остатков глюкозамина, эпимеризация D-глюкуроновой кислоты в L-идуроновую, О-сульфатирование остатков этих кислот в положении 2, О-сульфатирование остатков глюкозамина в положениях 3 и 6 (рис. 55.2). Так как эти реакции затрагивают не все моносахариды, структура получающихся молекул весьма разнообразна. Гликозаминогликановые цепи гепарина, перенесенного в гранулы тучных клеток, в течение нескольких часов расщепляются p-глюкуронидазой на фрагменты с молекулярной массой 5000—30 000 (в среднем около 12 000, то есть 40 моносахаридов).
  
 
==== Родственные гликозаминогликаны ====
 
==== Родственные гликозаминогликаны ====
Строка 12: Строка 12:
 
Гепарансульфат присутствует на клеточной мембране большинства эукариотических клеток и во внеклеточном матриксе. Он синтезируется из тех же повторяющихся последовательностей дисахаридов, что и гепарин (D-глюкуроновая кислота и N-ацетилглюкозамин), но подвергается меньшей модификации и поэтому содержит больше D-глюкуроновой кислоты и N-ацетилглюкозамина и меньше сульфатных групп. Гепарансульфат также обладает антикоагулянтными свойствами in vitro, но в значительно больших концентрациях.
 
Гепарансульфат присутствует на клеточной мембране большинства эукариотических клеток и во внеклеточном матриксе. Он синтезируется из тех же повторяющихся последовательностей дисахаридов, что и гепарин (D-глюкуроновая кислота и N-ацетилглюкозамин), но подвергается меньшей модификации и поэтому содержит больше D-глюкуроновой кислоты и N-ацетилглюкозамина и меньше сульфатных групп. Гепарансульфат также обладает антикоагулянтными свойствами in vitro, но в значительно больших концентрациях.
  
Дерматансульфат представляет собой полимер L-идуроно-вой кислоты и N-ацетилгалактозамина с различной степенью О-сульфатирования L-идуроновой кислоты в положении 2 и га-лактозамина в положениях 4 и 6. Как и гепарансульфат, дерматансульфат присутствует на клеточной мембране и во внеклеточном матриксе и обладает антикоагулянтными свойствами in vitro.
+
Дерматансульфат представляет собой полимер L-идуроновой кислоты и N-ацетилгалактозамина с различной степенью О-сульфатирования L-идуроновой кислоты в положении 2 и га-лактозамина в положениях 4 и 6. Как и гепарансульфат, дерматансульфат присутствует на клеточной мембране и во внеклеточном матриксе и обладает антикоагулянтными свойствами in vitro.
  
 
==== Источники ====
 
==== Источники ====
Строка 24: Строка 24:
 
Гепарин содержится в тканях внутри тучных клеток. По-видимому, он нужен для хранения внутри гранул этих клеток гистамина и некоторых протеаз (Humphries et al., 1999; Forsberg et al., 1999). После выхода из тучных клеток гепарин быстро захватывается и разрушается макрофагами. У здоровых людей в плазме его выявить не удается. Однако у больных системным мастоцитозом при массивной дегрануляции тучных клеток иногда наблюдается небольшое удлинение АЧТВ, предположительно связанное с выбросом гепарина в кровоток.
 
Гепарин содержится в тканях внутри тучных клеток. По-видимому, он нужен для хранения внутри гранул этих клеток гистамина и некоторых протеаз (Humphries et al., 1999; Forsberg et al., 1999). После выхода из тучных клеток гепарин быстро захватывается и разрушается макрофагами. У здоровых людей в плазме его выявить не удается. Однако у больных системным мастоцитозом при массивной дегрануляции тучных клеток иногда наблюдается небольшое удлинение АЧТВ, предположительно связанное с выбросом гепарина в кровоток.
  
Молекулы гепарансульфата на поверхности эндотелиальных клеток и во внеклеточном матриксе субэндотелиального слоя взаимодействуют с антитромбином III, препятствуя тромбообразованию. При злокачественных новообразованиях иногда наблюдается кровоточивость, вызванная попаданием гепарансульфата или дерматансульфата в кровоток (вероятно, при распаде опухоли).  
+
Молекулы гепарансульфата на поверхности эндотелиальных клеток и во внеклеточном матриксе субэндотелиального слоя взаимодействуют с антитромбином III, препятствуя [[Тромбообразование|тромбообразованию]]. При злокачественных новообразованиях иногда наблюдается кровоточивость, вызванная попаданием гепарансульфата или дерматансульфата в кровоток (вероятно, при распаде опухоли).  
  
 
=== Механизм действия ===  
 
=== Механизм действия ===  
Строка 32: Строка 32:
 
Гепарин ускоряет взаимодействие антитромбина III с тромбином более чем в 1000 раз благодаря тому, что служит матрицей, связывающей оба белка. Связывание с гепарином изменяет также конформацию антитромбина III, делая его реактивный центр более доступным для тромбина (Jin et al., 1997). После образования комплекса тромбин—антитромбин III молекула гепарина высвобождается. Участок молекулы гепарина, отвечающий за связывание с антитромбином III, представляет собой пентасахаридную последовательность, содержащую остаток глюкозамина, О-сульфатированный в положении 3 (рис. 55.2). Эта структура обнаруживается примерно в 30% молекул гепарина и, реже, в гепарансульфате. Другие гликозаминогликаны (дерматансульфат, хондрои-тинсульфаты) лишены этой структуры и не способны активировать антитромбин III. Гепарины с молекулярной массой менее 5400 (содержащие меньше 18 моносахаридов) не могут связывать одновременно антитромбин III и тромбин и потому не ускоряют инактивацию последнего. В то же время показанный на рис. 55.2 пентасахарид катализирует ингибирование антитромбином III фактора Ха (видимо, для этого достаточно только конформа-ционных изменений антитромбина III). Именно этим объясняется антикоагулянтное действие низкомолекулярных гепаринов, большинство молекул которых слишком коротки, чтобы связывать тромбин.
 
Гепарин ускоряет взаимодействие антитромбина III с тромбином более чем в 1000 раз благодаря тому, что служит матрицей, связывающей оба белка. Связывание с гепарином изменяет также конформацию антитромбина III, делая его реактивный центр более доступным для тромбина (Jin et al., 1997). После образования комплекса тромбин—антитромбин III молекула гепарина высвобождается. Участок молекулы гепарина, отвечающий за связывание с антитромбином III, представляет собой пентасахаридную последовательность, содержащую остаток глюкозамина, О-сульфатированный в положении 3 (рис. 55.2). Эта структура обнаруживается примерно в 30% молекул гепарина и, реже, в гепарансульфате. Другие гликозаминогликаны (дерматансульфат, хондрои-тинсульфаты) лишены этой структуры и не способны активировать антитромбин III. Гепарины с молекулярной массой менее 5400 (содержащие меньше 18 моносахаридов) не могут связывать одновременно антитромбин III и тромбин и потому не ускоряют инактивацию последнего. В то же время показанный на рис. 55.2 пентасахарид катализирует ингибирование антитромбином III фактора Ха (видимо, для этого достаточно только конформа-ционных изменений антитромбина III). Именно этим объясняется антикоагулянтное действие низкомолекулярных гепаринов, большинство молекул которых слишком коротки, чтобы связывать тромбин.
  
Антитромбин III быстро (Т1/2 < 0,1 с) ингибирует факторы 1Ха, Ха и тромбин при концентрации гепарина в плазме 0,1 — 10 ед/мл. При этом удлиняются АЧТВ и тромбиновое время (время свертывания плазмы при добавлении тромбина); ПВ изменяется меньше. Фактор Ха на поверхности тромбоцитов (в составе протромбиназного комплекса) и тромбин, связанный с фибрином, не ингибируются гепарином и антитромбином III.
+
Антитромбин III быстро (Т1/2 < 0,1 с) ингибирует факторы 1Ха, Ха и тромбин при концентрации гепарина в плазме 0,1 — 10 ед/мл. При этом удлиняются АЧТВ и тромбиновое время (время свертывания плазмы при добавлении тромбина); ПВ изменяется меньше. Фактор Ха на поверхности тромбоцитов (в составе протромбиназного комплекса) и тромбин, связанный с фибрином, не ингибируются гепарином и антитромбином III.[[Image:Gm55_2.jpg|250px|thumb|right|Рисунок 55.2. Антитромбинсвязываюший участок молекулы гепарина. ]]
 
 
Рисунок 55.2. Антитромбинсвязываюший участок молекулы гепарина. Сульфатные группы, необходимые для соединения с антитромбином III, выделены полужирным.
 
  
 
Таким образом, гепарин ускоряет инактивацию фактора Ха и «юмбина лишь после их освобождения из мест связывания. Тромбоцитарный фактор 4, высвобождающийся из а-гранул при агрегации тромбоцитов, препятствует связыванию антитромбина III с гепарином и гепарансульфатом, способствуя образованию тромба в месте свертывания.
 
Таким образом, гепарин ускоряет инактивацию фактора Ха и «юмбина лишь после их освобождения из мест связывания. Тромбоцитарный фактор 4, высвобождающийся из а-гранул при агрегации тромбоцитов, препятствует связыванию антитромбина III с гепарином и гепарансульфатом, способствуя образованию тромба в месте свертывания.
Строка 68: Строка 66:
 
Профилактика свертывания крови в условиях искусственного кровообращения требует очень больших доз гепарина. АЧТВ при этом удлиняется настолько, что становится неинформативным, поэтому для контроля зале-чением применяют другие тесты (например, активированное время свертывания).
 
Профилактика свертывания крови в условиях искусственного кровообращения требует очень больших доз гепарина. АЧТВ при этом удлиняется настолько, что становится неинформативным, поэтому для контроля зале-чением применяют другие тесты (например, активированное время свертывания).
  
При необходимости длительного лечения антикоагу-лянтами в ситуации, когда варфарин противопоказан (например, при беременности), гепарин можно вводить п/к. При суточной дозе около 35 ООО ед (в 2—3 приема) АЧТВ, определяемое в промежутке между введениями, удлиняется обычно в 1,5 раза. После подбора дозы дальнейший контроль обычно не требуется.
+
При необходимости длительного лечения антикоагулянтами в ситуации, когда варфарин противопоказан (например, при беременности), гепарин можно вводить п/к. При суточной дозе около 35 ООО ед (в 2—3 приема) АЧТВ, определяемое в промежутке между введениями, удлиняется обычно в 1,5 раза. После подбора дозы дальнейший контроль обычно не требуется.
  
Малые дозы гепарина профилактически назначают бальным со склонностью к тромбозам глубоких вен и ТЭЛА. Рекомендуемый режим введения: по 5000 ед п/к 2—3 раза в сутки. Так как АЧТВ при этом не удлиняется, лабораторный контроль не нужен.
+
Малые дозы гепарина профилактически назначают больным со склонностью к тромбозам глубоких вен и ТЭЛА. Рекомендуемый режим введения: по 5000 ед п/к 2—3 раза в сутки. Так как АЧТВ при этом не удлиняется, лабораторный контроль не нужен.
  
 
Низкомолекулярные гепарины (эноксапарин, далте-парин, ардепарин, надропарин, ревипарин, тинзапарин; в США сегодня применяют только первые три) весьма различны по составу. Сопоставимая анти-Ха-активность двух каких-либо препаратов еще не гарантирует их одинакового антитромботического действия. Низкомолекулярные гепарины вводят п/к 1—2 раза в сутки. Так как они почти не влияют на показатели свертываемости крови, лабораторный контроль обычно не нужен. В терминальной стадии ХПН Т,/2 низкомолекулярных гепаринов удлиняется, что требует контроля анти-Ха-активности. Особые указания по применению конкретных препаратов можно найти в прилагающихся к ним инструкциях.
 
Низкомолекулярные гепарины (эноксапарин, далте-парин, ардепарин, надропарин, ревипарин, тинзапарин; в США сегодня применяют только первые три) весьма различны по составу. Сопоставимая анти-Ха-активность двух каких-либо препаратов еще не гарантирует их одинакового антитромботического действия. Низкомолекулярные гепарины вводят п/к 1—2 раза в сутки. Так как они почти не влияют на показатели свертываемости крови, лабораторный контроль обычно не нужен. В терминальной стадии ХПН Т,/2 низкомолекулярных гепаринов удлиняется, что требует контроля анти-Ха-активности. Особые указания по применению конкретных препаратов можно найти в прилагающихся к ним инструкциях.
Строка 76: Строка 74:
 
==== Резистентность к гепарину ====
 
==== Резистентность к гепарину ====
  
Дозы гепарина, необходимые для удлинения АЧТВ, зависят от содержания в плазме гепаринсвязы-ваюших белков (например, богатого гистидином гликопротеида, витронектина и тромбоцитарного фактора 4), которые конкурентно ингибируют взаимодействие гепарина с антитромбином Ill. Иногда даже очень большие дозы гепарина (более 50 ООО ед/сут) не удлиняют АЧТВ. При этом концентрация гепарина в плазме, измеренная другими методами (например, с помощью титрования протамина сульфатом или по анти-Ха-активности), формально остается терапевтической. У некоторых из таких бальных АЧТВ исходно резко укорочено из-за высокой концентрации фактора VIII, и у них может не быть истинной резистентности к гепарину. У других больных (например, при массивной ТЭЛА) усилена элиминация препарата. Больные с наследственным дефицитом антитромбина III обычно хорошо отвечают на гепаринотерапию, так как концентрация антитромбина III у них составляет 40—60% нормы. Однако при приобретенном дефиците с концентрацией антитромбина III ниже 25% нормы (при циррозе печени, нефротическом синдроме, ЛВС-синдроме) эффекта может не быть даже при введении больших доз гепарина.
+
Дозы гепарина, необходимые для удлинения АЧТВ, зависят от содержания в плазме гепаринсвязываюших белков (например, богатого гистидином гликопротеида, витронектина и тромбоцитарного фактора 4), которые конкурентно ингибируют взаимодействие гепарина с антитромбином Ill. Иногда даже очень большие дозы гепарина (более 50 ООО ед/сут) не удлиняют АЧТВ. При этом концентрация гепарина в плазме, измеренная другими методами (например, с помощью титрования протамина сульфатом или по анти-Ха-активности), формально остается терапевтической. У некоторых из таких бальных АЧТВ исходно резко укорочено из-за высокой концентрации фактора VIII, и у них может не быть истинной резистентности к гепарину. У других больных (например, при массивной ТЭЛА) усилена элиминация препарата. Больные с наследственным дефицитом антитромбина III обычно хорошо отвечают на гепаринотерапию, так как концентрация антитромбина III у них составляет 40—60% нормы. Однако при приобретенном дефиците с концентрацией антитромбина III ниже 25% нормы (при циррозе печени, нефротическом синдроме, ЛВС-синдроме) эффекта может не быть даже при введении больших доз гепарина.
  
 
=== Побочные эффекты ===  
 
=== Побочные эффекты ===  
Строка 99: Строка 97:
  
 
== Читайте также ==
 
== Читайте также ==
 
+
*[[Лечение тромбозов]]
 +
*[[Гирудин]]
 +
*[[Фибринолитики]]
 +
*[[Тромбообразование]]
 +
*[[Антиагреганты]]
 +
*[[Заменители плазмы]]
 
*[[Гемостаз]]
 
*[[Гемостаз]]
 
*[[Средства, влияющие на свертывание крови]]
 
*[[Средства, влияющие на свертывание крови]]

Текущая версия на 22:00, 31 октября 2014

Источник:
Клиническая фармакология по Гудману и Гилману том 3.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

Гепарин[править | править код]

Историческая справка. В 1916 г. студенту-медику Маклейну, изучавшему природу растворимых в эфире прокоагулянтов, посчастливилось открыть фосфолипидный антикоагулянт. Вскоре после этого Говелл, в чьей лаборатории работал Маклейн, открыл водорастворимый гликозаминогликан, названный из-за высокого содержания в печени гепарином (Jaques, 1978). Успешное предотвращение гепарином свертывания in vitro привело позднее к его использованию для лечения венозных тромбозов.

Химические свойства и механизм действия[править | править код]

Гепарин — гликозаминогликан, содержащийся в гранулах тучных клеток. В ходе его синтеза из различных УДФ-сахаров образуется полимер, состоящий из чередующихся остатков D-глюкуроновой кислоты и N-ацетил-глюкозамина (Bourin and Lindahl, 1993). Примерно 10— 15 таких гликозаминогликановых цепей (по 200—300 моносахаридов каждая) присоединяются к белковой части молекулы, образуя протеогликан с молекулярной массой 750 000—1 000 000. Затем происходит модификация гликозаминогликановых цепей: N-деацетилирование и N-cyльфатирование остатков глюкозамина, эпимеризация D-глюкуроновой кислоты в L-идуроновую, О-сульфатирование остатков этих кислот в положении 2, О-сульфатирование остатков глюкозамина в положениях 3 и 6 (рис. 55.2). Так как эти реакции затрагивают не все моносахариды, структура получающихся молекул весьма разнообразна. Гликозаминогликановые цепи гепарина, перенесенного в гранулы тучных клеток, в течение нескольких часов расщепляются p-глюкуронидазой на фрагменты с молекулярной массой 5000—30 000 (в среднем около 12 000, то есть 40 моносахаридов).

Родственные гликозаминогликаны[править | править код]

Гепарансульфат присутствует на клеточной мембране большинства эукариотических клеток и во внеклеточном матриксе. Он синтезируется из тех же повторяющихся последовательностей дисахаридов, что и гепарин (D-глюкуроновая кислота и N-ацетилглюкозамин), но подвергается меньшей модификации и поэтому содержит больше D-глюкуроновой кислоты и N-ацетилглюкозамина и меньше сульфатных групп. Гепарансульфат также обладает антикоагулянтными свойствами in vitro, но в значительно больших концентрациях.

Дерматансульфат представляет собой полимер L-идуроновой кислоты и N-ацетилгалактозамина с различной степенью О-сульфатирования L-идуроновой кислоты в положении 2 и га-лактозамина в положениях 4 и 6. Как и гепарансульфат, дерматансульфат присутствует на клеточной мембране и во внеклеточном матриксе и обладает антикоагулянтными свойствами in vitro.

Источники[править | править код]

Гепарин обычно получают из бычьих легких или слизистой свиного кишечника. Такие препараты могут содержать небольшую примесь других гликозаминогликанов. Хотя состав гепаринов различного производства несколько отличен, их биологическая активность примерно одинакова (около 150 ед/мг). За 1 ед принимается количество гепарина, предотвращающее свертывание 1 мл цитратной овечьей плазмы в течение часа после добавления 0,2 мл 1% СаС12.

Низкомолекулярные гепарины с молекулярной массой 1000— 10 000 (в среднем 4500, то есть 15 моносахаридов) получают из обычного препарата путем гельфильтрации, преципитации этанолом или частичной деполимеризации с помощью азотистой кислоты и других реагентов. Низкомолекулярные гепарины отличаются от обычного и друг от друга фармакокинетическими свойствами и механизмом действия (см. ниже). Их активность обычно определяют по ингибированию фактора Ха.

Физиологическая роль[править | править код]

Гепарин содержится в тканях внутри тучных клеток. По-видимому, он нужен для хранения внутри гранул этих клеток гистамина и некоторых протеаз (Humphries et al., 1999; Forsberg et al., 1999). После выхода из тучных клеток гепарин быстро захватывается и разрушается макрофагами. У здоровых людей в плазме его выявить не удается. Однако у больных системным мастоцитозом при массивной дегрануляции тучных клеток иногда наблюдается небольшое удлинение АЧТВ, предположительно связанное с выбросом гепарина в кровоток.

Молекулы гепарансульфата на поверхности эндотелиальных клеток и во внеклеточном матриксе субэндотелиального слоя взаимодействуют с антитромбином III, препятствуя тромбообразованию. При злокачественных новообразованиях иногда наблюдается кровоточивость, вызванная попаданием гепарансульфата или дерматансульфата в кровоток (вероятно, при распаде опухоли).

Механизм действия[править | править код]

В 1939 г. Бринкхаус и сотр. обнаружили, что антикоагулянтное действие гепарина опосредуется одним из компонентов плазмы, и назвали его кофактором гепарина. Тридцатью годами позже выяснилось, что им является антитромбин III — белок плазмы, который быстро инактивирует тромбин в присутствии гепарина (Olson and Bjork, 1992). Антитромбин III представляет собой гликозилированный одноцепочечный полипептид с молекулярной массой около 58 000, гомологичный семейству серпинов (спиновых яротеаз ингибиторов), в частности агантитрипсину. Антитромбин III синтезируется в печени, его сывороточная концентрация составляет 2,6 мкмоль/л. Он активен против факторов внутреннего и общего механизмов свертывания (в частности, 1Ха, Ха и тромбина), но слабо действует на фактор Vila. Механизм ингибирующего действия антитромбина III следующий. Перечисленные факторы свертывания, как уже говорилось, являются протеазами. Антитромбин III выступает в роли их субстрата: активные факторы свертывания атакуют определенную пептидную связь между аргинином и серином в реактивном центре его молекулы. Однако расщепления этой связи не происходит, и образуется устойчивый комплекс из фактора свертывания и антитромбина III в эквимолярном соотношении. В результате фактор свертывания теряет протеолитическую активность.

Гепарин ускоряет взаимодействие антитромбина III с тромбином более чем в 1000 раз благодаря тому, что служит матрицей, связывающей оба белка. Связывание с гепарином изменяет также конформацию антитромбина III, делая его реактивный центр более доступным для тромбина (Jin et al., 1997). После образования комплекса тромбин—антитромбин III молекула гепарина высвобождается. Участок молекулы гепарина, отвечающий за связывание с антитромбином III, представляет собой пентасахаридную последовательность, содержащую остаток глюкозамина, О-сульфатированный в положении 3 (рис. 55.2). Эта структура обнаруживается примерно в 30% молекул гепарина и, реже, в гепарансульфате. Другие гликозаминогликаны (дерматансульфат, хондрои-тинсульфаты) лишены этой структуры и не способны активировать антитромбин III. Гепарины с молекулярной массой менее 5400 (содержащие меньше 18 моносахаридов) не могут связывать одновременно антитромбин III и тромбин и потому не ускоряют инактивацию последнего. В то же время показанный на рис. 55.2 пентасахарид катализирует ингибирование антитромбином III фактора Ха (видимо, для этого достаточно только конформа-ционных изменений антитромбина III). Именно этим объясняется антикоагулянтное действие низкомолекулярных гепаринов, большинство молекул которых слишком коротки, чтобы связывать тромбин.

Антитромбин III быстро (Т1/2 < 0,1 с) ингибирует факторы 1Ха, Ха и тромбин при концентрации гепарина в плазме 0,1 — 10 ед/мл. При этом удлиняются АЧТВ и тромбиновое время (время свертывания плазмы при добавлении тромбина); ПВ изменяется меньше. Фактор Ха на поверхности тромбоцитов (в составе протромбиназного комплекса) и тромбин, связанный с фибрином, не ингибируются гепарином и антитромбином III.

Рисунок 55.2. Антитромбинсвязываюший участок молекулы гепарина.

Таким образом, гепарин ускоряет инактивацию фактора Ха и «юмбина лишь после их освобождения из мест связывания. Тромбоцитарный фактор 4, высвобождающийся из а-гранул при агрегации тромбоцитов, препятствует связыванию антитромбина III с гепарином и гепарансульфатом, способствуя образованию тромба в месте свертывания.

При концентрации гепарина или дерматансульфата выше 5 ед/мл их ингибирующее действие на тромбин опосредовано преимущественно кофактором гепарина П. Гепарин стимулирует также подавление активности тромбина антиактиватором плазминогена 1, ингибитором протеина С и протеазой нексин-1 и активности фактора Ха ингибитором внешнего механизма свертывания. Концентрации четырех последних ингибиторов в плазме в 100 с лишним раз меньше, чем концентрация антитромбина III. В/в введение гепарина повышает концентрацию ингибитора внешнего механизма свертывания в несколько раз (возможно, вызывая его высвобождение из мест связывания на эндотелии).

Другие свойства гепарина[править | править код]

Высокие дозы гепарина могут удлинять время кровотечения, нарушая агрегацию тромбоцитов. Не ясно, велик ли вклад антиагрегантного действия гепарина в вызываемую им кровоточивость. Гепарин просветляет хилезную плазму, вызывая выход в кровоток липопротеидлипазы, которая расщепляет триглицериды на жирные кислоты и глицерин. Этот феномен наблюдается даже при низких концентрациях гепарина, недостаточных для проявления антикоагулянтного действия. После отмены препарата возможна рикошетная гипер-липопротеидемия.

Гепарин подавляет рост многих клеток в культуре, в том числе эндотелиальных и гладкомышечных клеток сосудов, а также мезангиальных клеток почек. В опытах на животных он препятствовал пролиферации гладкомышечных клеток сосудов после повреждения эндотелия сонных артерий. Это действие гепарина никак не связано с его антикоагулянтной активностью (Wright et al., 1989).

Кислый и основный факторы роста фибробластов обладают высоким сродством к гепарину. Эти факторы стимулируют рост гладкомышечных, эндотелиальных и других мезенхимных клеток, а также ангиогенез. Сам гепарин подавляет рост эндотелиальных клеток капилляров, но в то же время потенцирует действие кислого фактора роста фибробластов на эти клетки (Sudhal-teretal., 1989). Это действие зависит не от его антикоагулянтной активности, а от размера и степени сульфатирования молекул гепарина. Гепарансульфат на поверхности мезенхимных клеток служит низкоаффинным участком связывания для основного фактора роста фибробластов, а во внеклеточном матриксе стабилизирует этот фактор и выступает в качестве депо, из которого основный фактор роста фибробластов высвобождается под действием гепаринсульфатлиазы или избытка гепарина. Кроме того, он, как и гепарин, необходим для проявления биологической активности основного фактора роста фибробластов, способствуя его связыванию с высокоаффинным рецептором с собственной тирозинкиназной активностью (Yayon et al., 1991).

Применение[править | править код]

Гепарин начинает действовать быстро, что позволяет использовать его при венозных тромбозах и ТЭЛА. Длительность лечения обычно составляет 4—5 сут. Сразу назначают и непрямые антикоагулянты внутрь, которые к моменту отмены гепарина начинают действовать в полную силу (см. ниже). При тромбозах и эмболиях, рецидивирующих на фоне обычного лечения непрямыми антикоагулянтами (например, при синдроме Труссо), проводят длительную гепаринотерапию. Гепарин применяют также: при нестабильной стенокардии и инфаркте миокарда; при баллонной коронарной ангиопластике и установке стента; при операциях, требующих искусственного кровообращения; у некоторых больных с ДВС-синдромом. Низкие дозы гепарина успешно предотвращают венозные тромбозы и ТЭЛА у больных из группы риска (например, после операций на костях и суставах). Недавно были разработаны подробные рекомендации по применению гепарина (Proceedings of the American College of Chest Physicians 5th Consensus Conference on Antithrombotic Therapy, 1998).

Первым утвержденным ФДА показанием к применению низкомолекулярных гепаринов стала профилактика венозных тромбозов и ТЭЛА. Недавно была показана их эффективность при венозных тромбозах, ТЭЛА и нестабильной стенокардии (Hirsh et al., 1998а). Главное их преимущество перед обычным гепарином — более предсказуемая фармакокинетика, позволяющая назначать их п/к без лабораторного контроля (см. ниже). Это дает возможность лечить многих больных на дому. Кроме того, лечение низкомолекулярными гепаринами реже осложняется гепариновой тромбоцитопенией и, по-видимому, остеопорозом и кровоточивостью.

В отличие от варфарина гепарин не проходит через плаценту и не вызывает пороков развития, что позволяет назначать его беременным. Гепарин не повышает перинатальную смертность и риск преждевременных родов (Ginsberg et al., 1989а, b). Для уменьшения риска послеродового кровотечения гепарин желательно отменять за сутки до родов. Вопрос об использовании низкомолекулярных гепаринов у беременных изучен недостаточно.

Фармакокинетика[править | править код]

Гепарин не всасывается из ЖКТ, и поэтому его вводят п/к или путем в/в инфузии. При в/в введении препарат начинает действовать немедленно. Напротив, при п/к введении его биодоступность может сильно различаться, а действие проявляется лишь через 1—2 ч. Биодоступность низкомолекулярных гепаринов примерно одинакова.

Т1/2 гепарина зависит от дозы. При в/в введении в дозе 100, 400 и 800 ед/кг его антикоагулянтная активность уменьшается наполовину соответственно за 1, 2,5 и 5 ч (Приложение II). Разрушение гепарина в основном идет в макрофагах; небольшое количество препарата выводится в неизмененном виде с мочой. Т1/2 гепарина может несколько укорачиваться при ТЭЛА и удлиняться в терминальных стадиях цирроза печени и ХПН. У низкомолекулярных гепаринов Т1/2 несколько больше.

Дозы и лабораторный контроль[править | править код]

Стандартные дозы гепарина обычно вводят путем в/в инфузии. Лечение венозных тромбозов и ТЭЛА начинают с введения 5000 ед гепарина струйно с последующей инфузией со скоростью 1200—1600 ед/ч. Контроль за лечением проводят, определяя АЧТВ. Терапевтической дозой гепарина считается доза, соответствующая концентрации гепарина в плазме 0,3—0,7 ед/мл, определенной по анти-Ха-активности (Hirsh et al., 1998а). Значения АЧТВ, соответствующие этим концентрациям гепарина, зависят от используемого оборудования и реагентов. Обычно считают достаточным удлинение АЧТВ в 1,7—2,5 раза, но некоторые наборы для определения АЧТВ завышают этот показатель, следствием чего становится назначение недостаточных доз гепарина. Введение недостаточных доз в первые сутки повышает риск повторных тромбозов и эмболий. АЧТВ определяют до начала лечения и затем каждые 6 ч; по этим данным проводится коррекция дозы препарата с помощью номограмм (Raschke et al., 1993). Когда подбор дозы завершен, контроль можно проводить 1 раз в сутки.

Профилактика свертывания крови в условиях искусственного кровообращения требует очень больших доз гепарина. АЧТВ при этом удлиняется настолько, что становится неинформативным, поэтому для контроля зале-чением применяют другие тесты (например, активированное время свертывания).

При необходимости длительного лечения антикоагулянтами в ситуации, когда варфарин противопоказан (например, при беременности), гепарин можно вводить п/к. При суточной дозе около 35 ООО ед (в 2—3 приема) АЧТВ, определяемое в промежутке между введениями, удлиняется обычно в 1,5 раза. После подбора дозы дальнейший контроль обычно не требуется.

Малые дозы гепарина профилактически назначают больным со склонностью к тромбозам глубоких вен и ТЭЛА. Рекомендуемый режим введения: по 5000 ед п/к 2—3 раза в сутки. Так как АЧТВ при этом не удлиняется, лабораторный контроль не нужен.

Низкомолекулярные гепарины (эноксапарин, далте-парин, ардепарин, надропарин, ревипарин, тинзапарин; в США сегодня применяют только первые три) весьма различны по составу. Сопоставимая анти-Ха-активность двух каких-либо препаратов еще не гарантирует их одинакового антитромботического действия. Низкомолекулярные гепарины вводят п/к 1—2 раза в сутки. Так как они почти не влияют на показатели свертываемости крови, лабораторный контроль обычно не нужен. В терминальной стадии ХПН Т,/2 низкомолекулярных гепаринов удлиняется, что требует контроля анти-Ха-активности. Особые указания по применению конкретных препаратов можно найти в прилагающихся к ним инструкциях.

Резистентность к гепарину[править | править код]

Дозы гепарина, необходимые для удлинения АЧТВ, зависят от содержания в плазме гепаринсвязываюших белков (например, богатого гистидином гликопротеида, витронектина и тромбоцитарного фактора 4), которые конкурентно ингибируют взаимодействие гепарина с антитромбином Ill. Иногда даже очень большие дозы гепарина (более 50 ООО ед/сут) не удлиняют АЧТВ. При этом концентрация гепарина в плазме, измеренная другими методами (например, с помощью титрования протамина сульфатом или по анти-Ха-активности), формально остается терапевтической. У некоторых из таких бальных АЧТВ исходно резко укорочено из-за высокой концентрации фактора VIII, и у них может не быть истинной резистентности к гепарину. У других больных (например, при массивной ТЭЛА) усилена элиминация препарата. Больные с наследственным дефицитом антитромбина III обычно хорошо отвечают на гепаринотерапию, так как концентрация антитромбина III у них составляет 40—60% нормы. Однако при приобретенном дефиците с концентрацией антитромбина III ниже 25% нормы (при циррозе печени, нефротическом синдроме, ЛВС-синдроме) эффекта может не быть даже при введении больших доз гепарина.

Побочные эффекты[править | править код]

Кровоточивость[править | править код]

Главные осложнения гепаринотерапии — геморрагические. Тяжелые кровотечения отмечались различными исследователями у 1— 33%больных; водном исследовании, включавшем 647 больных, было отмечено 3 смертельных исхода (Levine and Hirsh, 1986). В недавних исследованиях у больных ТЭЛА тяжелая кровоточивость отмечалась менее чем у 3% больных, получавших гепарин в/в (Levine et al., 1998). Сопоставимые данные получены при лечении ТЭЛА низкомолекулярными гепаринами. В целом риск кровоточивости возрастает с увеличением суточной дозы и АЧТВ, но корреляция между этими показателями слабая, и кровотечения могут отмечаться даже при терапевтических значениях АЧТВ. Обычно они вызваны сопутствующей патологией, например недавними операциями, травмами, язвенной болезнью или тромбоцитопатиями.

Антикоагулянтное действие гепарина прекращается через несколько часов после отмены препарата. При нетяжелой кровоточивости обычно нет необходимости в назначении антидота гепарина. При угрожающих жизни кровотечениях действие гепарина можно быстро остановить медленной инфузией протамина сульфата — смеси основных полипептидов, получаемой из спермы лосося. Протамин прочно связывается с гепарином, нейтрализуя его антикоагулянтное действие. Он связывается также с тромбоцитами, фибриногеном и другими белками плазмы и может сам по себе вызвать кровоточивость. Поэтому следует вводить лишь минимальную дозу протамина сульфата, обеспечивающую нейтрализацию гепарина. Эта доза обычно составляет 1 мг на каждые 100 ед оставшегося в организме гепарина, ее вводят в/в медленно (до 50 мгза 10 мин).

Протамина сульфат используют обычно для устранения действия гепарина после операций на сердце и сосудах. Анафилактические реакции возникают примерно у 1% больных сахарным диабетом, получавших протамин-содержащие инсулины (инсулин NPH или протамин-цинк-инсулин), но встречаются и у других больных. Реже наблюдается реакция в виде спазма легочных сосудов, правожелудочковой недостаточности, артериальной гипотонии и преходящей нейтропении.

Гепариновая тромбоцитопения[править | править код]

Этот диагноз ставят при уменьшении числа тромбоцитов ниже 150 000 мкл~' или на 50% исходного уровня. Она возникает примерно у 3% больных после 5—10 сут лечения обычным гепарином (Warkentin, 1999). Низкомолекулярные гепарины реже вызывают тромбоцитопению. У трети больных с этим осложнением развиваются тяжелые тромбозы (иногда угрожающие жизни или требующие ампутации конечностей), которые могут предшествовать тромбоцитопении. Наиболее часты венозные тромбозы и ТЭЛА, но возможны и тромбозы периферических артерий, инфаркт миокарда, инсульт. Гепариновая тромбоцитопения может сопровождаться двусторонними некрозами надпочечников, кожными поражениями в местах инъекций и различными системными реакциями. Причиной этих осложнений считается выработка антител класса IgG к комплексу гепарина с фактором тромбоцитов 4 (реже с другими хемокинами). Эти комплексы связываются с Fcyl 1а-рецепторами тромбоцитов, вызывая агрегацию тромбоцитов, выброс еше большего количества фактора тромбоцитов 4 и образование тромбина. Кроме того, антитела могут повреждать сосудистую стенку, связываясь с комплексом фактора тромбоцитов 4 и гепарансул ьфата на поверхности эндотелия.

Появление тромбоцитопении или других упомянутых выше осложнений после 5 сут гепаринотерапии или позднее (независимо от дозы или пути введения) требует немедленной отмены препарата. У больных, получавших гепарин в предыдущие 3—4 мес, из-за оставшихся антител гепариновая тромбоцитопения может развиться быстрее. Диагноз можно подтвердить выявлением антител к комплексу гепарина с фактором тромбоцитов 4, а также исследованием гепарин-зависимой активации тромбоцитов. Так как после отмены препарата могут возникнуть тромбозы (Wallis et al., 1999; Warkentin, 1999), при гепариновой тромбоцитопении назначают другие антикоагулянты — лепирудин или данапароид (см. ниже). Низкомолекулярные гепарины в таких случаях применять нельзя, так как они зачастую перекрестно реагируют с антителами к обычному гепарину. Варфарин у больных париновой тромбоцитопенией может вызвать влажную гангрену (Warkentin et al., 1997) или множественные некрозы кожи (Warkentin et al., 1999), его можно назначать лишь после устранения тромбоцитопении и проведения лечения другими антикоагулянтами.

Другие осложнения[править | править код]

У больных, получающих гепарин в/в ри п/к, зачастую несколько повышается активность аминотрансфераз при нормальном уровне билирубина и нормальной активности щелочной фосфатазы. Длительное лечение терапевтическими дозами гепарина (более 20000 ед/сут на протяжении, например, 3—6 мес) иногда, хотя и редко, вызывает остеопороз с компрессионными переломами позвонков. Гепарин даже в небольших дозах ингибирует синтез альдостерона в надпочечниках и изредка вызывает гиперкалиемию. Аллергические реакции на гепарин (исключая тромбоцитопению) редки.

Читайте также[править | править код]