Энергозатраты человека и пищевой рацион — различия между версиями
Ars (обсуждение | вклад) (→Читайте также) |
Ars (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | == | + | == Энергозатраты человека и пищевой рацион == |
− | {{ | + | {{Jissn}} |
+ | <small>Основная статья: [http://www.jissn.com/content/11/1/7 Metabolic adaptation to weight loss: implications for the athlete]</small> | ||
− | + | Общий [[Суточный расход энергии|ежедневный расход энергии]] человека складывается из ряда отдельных компонентов. Самой большой составляющей являются энергозатраты в состоянии покоя, это расход энергии на базальный (основной) метаболизм<ref>Maclean PS, Bergouignan A, Cornier MA, Jackman MR: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011, 301:R581-R600.http://www.ncbi.nlm.nih.gov/pubmed/21677272?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Другой компонент – расход энергии в состоянии активности. Его в свою очередь можно разделить на: | |
− | * | + | * расход энергии на термогенез во время спортивных упражнений |
− | * | + | * расход энергии на термогенез во время активности, не связанной с упражнениями |
− | * | + | * потери энергии в результате термического эффекта пищи |
− | + | Скорость протекания метаболизма – динамическая величина. Дефицит энергии в организме, снижение массы тела влияет на энергообмен организма. В частности, при активном снижении массы тела, снижаются общий ежедневный расход энергии человека. Кроме того, снижение массы тела сокращает объем тканей, участвующих в метаболизме, и тем самым снижает скорость общего метаболизма<ref>Ravussin E, Burnand B, Schutz Y, Jequier E: Energy expenditure before and during energy restriction in obese patients. Am J Clin Nutr 1985, 41:753-759.http://www.ncbi.nlm.nih.gov/pubmed/3984927?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Leibel RL, Rosenbaum M, Hirsch J: Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995, 332:621-628.http://www.ncbi.nlm.nih.gov/pubmed/7632212?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. | |
− | + | Зачастую величина, на которую происходит снижение общих ежедневных затрат энергии, превосходит показатель, рассчитанный на основе величины, на которую снизилась общая масса тела. В ряде исследований данный факт объясняется стремлением организма к восстановлению нормальной (базовой) массы тела<ref>Doucet E, St-Pierre S, Almeras N, Despres JP, Bouchard C, Tremblay A: Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001, 85:715-723.http://www.ncbi.nlm.nih.gov/pubmed/11430776?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL: Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008, 88:906-912.http://www.ncbi.nlm.nih.gov/pubmed/18842775?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Rosenbaum M, Leibel RL: Adaptive thermogenesis in humans. Int J Obes 2010, 34(Suppl 1):S47-S55. OpenURL</ref>. Именно адаптивным термогенезом можно объяснить случаи наступления плато в снижении массы тела, а также предрасположенность организма к набору веса после отмены диеты. | |
− | + | Кроме того, при сокращении массы тела происходит снижение уровня термогенеза во время упражнений<ref>Weigle DS: Contribution of decreased body mass to diminished thermic effect of exercise in reduced-obese men. Int J Obes 1988, 12:567-578.http://www.ncbi.nlm.nih.gov/pubmed/3235273?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Weigle DS, Brunzell JD: Assessment of energy expenditure in ambulatory reduced-obese subjects by the techniques of weight stabilization and exogenous weight replacement. Int J Obes 1990, 14(Suppl 1):69-77. discussion 77–81</ref><ref>Doucet E, Imbeault P, St-Pierre S, Almeras N, Mauriege P, Despres JP, Bouchard C, Tremblay A: Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci 2003, 105:89-95.http://www.ncbi.nlm.nih.gov/pubmed/12617720?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Очевидно, что при активности, которая требует перемещения тела, сокращение общей массы тела приведет к снижению количества энергии, необходимой для выполнения упражнений. Однако в том случае, если спортсмен с помощью утяжелителей повышает свой вес до исходного, расход энергии на выполнение упражнения остается ниже, чем он был до сокращения массы тела. Предполагается, что такое повышение мышечной эффективности может быть связано с гипотироидизмом и гиполептинемией, которыми сопровождается снижение веса, что приводит к снижению дыхательного коэффициента и увеличению доли липидного метаболизма<ref>Rosenbaum M, Vandenborne K, Goldsmith R, Simoneau JA, Heymsfield S, Joanisse DR, Hirsch J, Murphy E, Matthews D, Segal KR, Leibel RL: Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol Regul Integr Comp Physiol 2003, 285:R183-192.http://www.ncbi.nlm.nih.gov/pubmed/12609816?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. | |
− | + | Термический эффект пищи (ТЭП) включает в себя энергозатраты на поглощение пищи, абсорбцию, метаболизм и депонирование нутриентов<ref>Maclean PS, Bergouignan A, Cornier MA, Jackman MR: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011, 301:R581-R600. http://www.ncbi.nlm.nih.gov/pubmed/21677272?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. ТЭП составляет примерно 10% от общих ежедневных затрат энергии<ref>Tappy L: Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev 1996, 36:391-397.http://www.ncbi.nlm.nih.gov/pubmed/8878356?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C: Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 1986, 78:1568-1578.http://www.ncbi.nlm.nih.gov/pubmed/3782471?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Эта доля может меняться в зависимости от типа диеты. При этом относительная величина ТЭП не изменяется при энергетическом дефиците в организме<ref>Miles CW, Wong NP, Rumpler WV, Conway J: Effect of circadian variation in energy expenditure, within-subject variation and weight reduction on thermic effect of food. Eur J Clin Nutr 1993, 47:274-284.http://www.ncbi.nlm.nih.gov/pubmed/8491165?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>, несмотря на то, что при низкокалорийной диете, естественно, абсолютная величина ТЭП будет ниже, чем при обычной диете. | |
− | + | Энергозатраты на активность, не связанную с упражнениями (повседневная активность), также снижаются при наступлении энергодефицита<ref>Levine JA: Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab 2002, 16:679-702.http://www.ncbi.nlm.nih.gov/pubmed/12468415?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Существуют свидетельства того, что уровень спонтанной физической активности снижается при общем энергодефиците организма, и может оставаться некоторое время сниженным даже после возврата к нормальному потреблению пищи<ref>Weyer C, Walford RL, Harper IT, Milner M, MacCallum T, Tataranni PA, Ravussin E: Energy metabolism after 2 y of energy restriction: the biosphere 2 experiment. Am J Clin Nutr 2000, 72:946-953.http://www.ncbi.nlm.nih.gov/pubmed/11010936?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Этот фактор может также способствовать набору веса после отмены специальной диеты. В целом, для эффективного снижения массы тела, уровень потребления энергии нужно определить исходя из индивидуального расхода энергии в течение дня. В контексте снижения веса этот процесс осложняется тем фактом, что расходование энергии в течение дня носит динамический характер. В процессе снижения веса часто отмечается снижение общего уровня расходования энергии (включая расходование энергии при упражнениях и активности, не связанной с упражнениями), а также скорости общего метаболизма и затрат энергии, связанных с термическим эффектом пищи. В следствие запуска процесса адаптивного термогенеза, общие затраты энергии снижаются на величину, большую, чем можно предсказать исходя из наблюдаемого снижения массы тела. При этом процесс адаптивного термогенеза, а также снижение общего расходования энергии наблюдается даже после прекращения активного снижения веса<ref>Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL: Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008, 88:906-912. http://www.ncbi.nlm.nih.gov/pubmed/18842775?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Leibel RL, Hirsch J: Diminished energy requirements in reduced-obese patients. Metabolism 1984, 33:164-170.http://www.ncbi.nlm.nih.gov/pubmed/6694559?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. Эти изменения обусловлены стремлением организма минимизировать дефицит энергии, а также предотвратить дальнейшую потерю массы тела. | |
− | + | Для получения АТФ из энергетических субстратов организму требуется провести целую серию химических реакций. В случае аэробного метаболизма, этот процесс включает в себя движение протонов через внутреннюю мембрану митохондрий. С помощью АТФ-синтазы энергия протонов направляется на синтез АТФ. В то же время может происходить утечка протонов через внутреннюю мембрану посредством разобщающих белков (UCP)<ref>Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD: Mitochondrial proton and electron leaks. Essays Biochem 2010, 47:53-67.http://www.ncbi.nlm.nih.gov/pubmed/20533900?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. В таком случае происходит расход кислорода и окисление энергетических субстратов, но не происходит синтеза АТФ. Утечка протонов – довольно существенный фактор энергозатрат организма. К примеру, у крыс он может составлять 20-30% от общих энергетических затрат на метаболизм<ref>Rolfe DF, Brand MD: Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 1996, 271:C1380-1389.http://www.ncbi.nlm.nih.gov/pubmed/8897845?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Rolfe DF, Brown GC: Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997, 77:731-758http://www.ncbi.nlm.nih.gov/pubmed/9234964?dopt=Abstract&holding=f1000,f1000m,isrctn</ref><ref>Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD: Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 1999, 276:C692-699.http://www.ncbi.nlm.nih.gov/pubmed/10069997?dopt=Abstract&holding=f1000,f1000m,isrctn</ref>. | |
− | |||
− | В | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | В | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Читайте также == | == Читайте также == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
*[[Обмен веществ|Как ускорить обмен веществ]] | *[[Обмен веществ|Как ускорить обмен веществ]] | ||
+ | *[[Как подавить аппетит и справиться с голодом]] | ||
+ | *[[Гормоны голода и насыщения]] | ||
+ | *[[Регуляция аппетита]] | ||
+ | |||
+ | == Источники == | ||
+ | <references/> | ||
+ | [[Категория:Здоровье]][[Категория:Литература]] |
Версия 01:08, 4 декабря 2014
Энергозатраты человека и пищевой рацион
Основная статья: Metabolic adaptation to weight loss: implications for the athlete
Общий ежедневный расход энергии человека складывается из ряда отдельных компонентов. Самой большой составляющей являются энергозатраты в состоянии покоя, это расход энергии на базальный (основной) метаболизм[1]. Другой компонент – расход энергии в состоянии активности. Его в свою очередь можно разделить на:
- расход энергии на термогенез во время спортивных упражнений
- расход энергии на термогенез во время активности, не связанной с упражнениями
- потери энергии в результате термического эффекта пищи
Скорость протекания метаболизма – динамическая величина. Дефицит энергии в организме, снижение массы тела влияет на энергообмен организма. В частности, при активном снижении массы тела, снижаются общий ежедневный расход энергии человека. Кроме того, снижение массы тела сокращает объем тканей, участвующих в метаболизме, и тем самым снижает скорость общего метаболизма[2][3].
Зачастую величина, на которую происходит снижение общих ежедневных затрат энергии, превосходит показатель, рассчитанный на основе величины, на которую снизилась общая масса тела. В ряде исследований данный факт объясняется стремлением организма к восстановлению нормальной (базовой) массы тела[4][5][6]. Именно адаптивным термогенезом можно объяснить случаи наступления плато в снижении массы тела, а также предрасположенность организма к набору веса после отмены диеты.
Кроме того, при сокращении массы тела происходит снижение уровня термогенеза во время упражнений[7][8][9]. Очевидно, что при активности, которая требует перемещения тела, сокращение общей массы тела приведет к снижению количества энергии, необходимой для выполнения упражнений. Однако в том случае, если спортсмен с помощью утяжелителей повышает свой вес до исходного, расход энергии на выполнение упражнения остается ниже, чем он был до сокращения массы тела. Предполагается, что такое повышение мышечной эффективности может быть связано с гипотироидизмом и гиполептинемией, которыми сопровождается снижение веса, что приводит к снижению дыхательного коэффициента и увеличению доли липидного метаболизма[10].
Термический эффект пищи (ТЭП) включает в себя энергозатраты на поглощение пищи, абсорбцию, метаболизм и депонирование нутриентов[11]. ТЭП составляет примерно 10% от общих ежедневных затрат энергии[12][13]. Эта доля может меняться в зависимости от типа диеты. При этом относительная величина ТЭП не изменяется при энергетическом дефиците в организме[14], несмотря на то, что при низкокалорийной диете, естественно, абсолютная величина ТЭП будет ниже, чем при обычной диете.
Энергозатраты на активность, не связанную с упражнениями (повседневная активность), также снижаются при наступлении энергодефицита[15]. Существуют свидетельства того, что уровень спонтанной физической активности снижается при общем энергодефиците организма, и может оставаться некоторое время сниженным даже после возврата к нормальному потреблению пищи[16]. Этот фактор может также способствовать набору веса после отмены специальной диеты. В целом, для эффективного снижения массы тела, уровень потребления энергии нужно определить исходя из индивидуального расхода энергии в течение дня. В контексте снижения веса этот процесс осложняется тем фактом, что расходование энергии в течение дня носит динамический характер. В процессе снижения веса часто отмечается снижение общего уровня расходования энергии (включая расходование энергии при упражнениях и активности, не связанной с упражнениями), а также скорости общего метаболизма и затрат энергии, связанных с термическим эффектом пищи. В следствие запуска процесса адаптивного термогенеза, общие затраты энергии снижаются на величину, большую, чем можно предсказать исходя из наблюдаемого снижения массы тела. При этом процесс адаптивного термогенеза, а также снижение общего расходования энергии наблюдается даже после прекращения активного снижения веса[17][18]. Эти изменения обусловлены стремлением организма минимизировать дефицит энергии, а также предотвратить дальнейшую потерю массы тела.
Для получения АТФ из энергетических субстратов организму требуется провести целую серию химических реакций. В случае аэробного метаболизма, этот процесс включает в себя движение протонов через внутреннюю мембрану митохондрий. С помощью АТФ-синтазы энергия протонов направляется на синтез АТФ. В то же время может происходить утечка протонов через внутреннюю мембрану посредством разобщающих белков (UCP)[19]. В таком случае происходит расход кислорода и окисление энергетических субстратов, но не происходит синтеза АТФ. Утечка протонов – довольно существенный фактор энергозатрат организма. К примеру, у крыс он может составлять 20-30% от общих энергетических затрат на метаболизм[20][21][22].
Читайте также
- Как ускорить обмен веществ
- Как подавить аппетит и справиться с голодом
- Гормоны голода и насыщения
- Регуляция аппетита
Источники
- ↑ Maclean PS, Bergouignan A, Cornier MA, Jackman MR: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011, 301:R581-R600.http://www.ncbi.nlm.nih.gov/pubmed/21677272?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Ravussin E, Burnand B, Schutz Y, Jequier E: Energy expenditure before and during energy restriction in obese patients. Am J Clin Nutr 1985, 41:753-759.http://www.ncbi.nlm.nih.gov/pubmed/3984927?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Leibel RL, Rosenbaum M, Hirsch J: Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995, 332:621-628.http://www.ncbi.nlm.nih.gov/pubmed/7632212?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Doucet E, St-Pierre S, Almeras N, Despres JP, Bouchard C, Tremblay A: Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001, 85:715-723.http://www.ncbi.nlm.nih.gov/pubmed/11430776?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL: Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008, 88:906-912.http://www.ncbi.nlm.nih.gov/pubmed/18842775?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rosenbaum M, Leibel RL: Adaptive thermogenesis in humans. Int J Obes 2010, 34(Suppl 1):S47-S55. OpenURL
- ↑ Weigle DS: Contribution of decreased body mass to diminished thermic effect of exercise in reduced-obese men. Int J Obes 1988, 12:567-578.http://www.ncbi.nlm.nih.gov/pubmed/3235273?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Weigle DS, Brunzell JD: Assessment of energy expenditure in ambulatory reduced-obese subjects by the techniques of weight stabilization and exogenous weight replacement. Int J Obes 1990, 14(Suppl 1):69-77. discussion 77–81
- ↑ Doucet E, Imbeault P, St-Pierre S, Almeras N, Mauriege P, Despres JP, Bouchard C, Tremblay A: Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci 2003, 105:89-95.http://www.ncbi.nlm.nih.gov/pubmed/12617720?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rosenbaum M, Vandenborne K, Goldsmith R, Simoneau JA, Heymsfield S, Joanisse DR, Hirsch J, Murphy E, Matthews D, Segal KR, Leibel RL: Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol Regul Integr Comp Physiol 2003, 285:R183-192.http://www.ncbi.nlm.nih.gov/pubmed/12609816?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Maclean PS, Bergouignan A, Cornier MA, Jackman MR: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011, 301:R581-R600. http://www.ncbi.nlm.nih.gov/pubmed/21677272?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Tappy L: Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev 1996, 36:391-397.http://www.ncbi.nlm.nih.gov/pubmed/8878356?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C: Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 1986, 78:1568-1578.http://www.ncbi.nlm.nih.gov/pubmed/3782471?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Miles CW, Wong NP, Rumpler WV, Conway J: Effect of circadian variation in energy expenditure, within-subject variation and weight reduction on thermic effect of food. Eur J Clin Nutr 1993, 47:274-284.http://www.ncbi.nlm.nih.gov/pubmed/8491165?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Levine JA: Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab 2002, 16:679-702.http://www.ncbi.nlm.nih.gov/pubmed/12468415?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Weyer C, Walford RL, Harper IT, Milner M, MacCallum T, Tataranni PA, Ravussin E: Energy metabolism after 2 y of energy restriction: the biosphere 2 experiment. Am J Clin Nutr 2000, 72:946-953.http://www.ncbi.nlm.nih.gov/pubmed/11010936?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL: Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008, 88:906-912. http://www.ncbi.nlm.nih.gov/pubmed/18842775?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Leibel RL, Hirsch J: Diminished energy requirements in reduced-obese patients. Metabolism 1984, 33:164-170.http://www.ncbi.nlm.nih.gov/pubmed/6694559?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD: Mitochondrial proton and electron leaks. Essays Biochem 2010, 47:53-67.http://www.ncbi.nlm.nih.gov/pubmed/20533900?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rolfe DF, Brand MD: Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 1996, 271:C1380-1389.http://www.ncbi.nlm.nih.gov/pubmed/8897845?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rolfe DF, Brown GC: Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997, 77:731-758http://www.ncbi.nlm.nih.gov/pubmed/9234964?dopt=Abstract&holding=f1000,f1000m,isrctn
- ↑ Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD: Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 1999, 276:C692-699.http://www.ncbi.nlm.nih.gov/pubmed/10069997?dopt=Abstract&holding=f1000,f1000m,isrctn