Аэробное окисление глюкозы — различия между версиями
Nico (обсуждение | вклад) (Новая страница: «== Аэробное окисление глюкозы для получения энергии в виде АТФ == Рис. 16.1. Аэробное окислен…») |
Django (обсуждение | вклад) (→Аэробное окисление глюкозы для получения энергии в виде АТФ) |
||
Строка 1: | Строка 1: | ||
== Аэробное окисление глюкозы для получения энергии в виде АТФ == | == Аэробное окисление глюкозы для получения энергии в виде АТФ == | ||
− | |||
− | |||
− | |||
=== Малат/аспартатная челночная система и глицерофосфатная челночная система === | === Малат/аспартатная челночная система и глицерофосфатная челночная система === | ||
− | + | [[Image:Bio_wiki_16_1.jpg|250px|thumb|right|Рис. 16.1. Аэробное окисление глюкозы с образованием 32 молекул АТФ]] | |
НАДН образуется в цитозоле ферментом глицеральдегид-3-фосфатдегидрогеназой. Для окисления в дыхательной цепи, сопряженного с [[Синтез АТФ|синтезом АТФ]], он должен проникнуть в матрикс митохондрии, однако внутренняя мембрана митохондрии непроницаема для НАДН. Эта проблема решается благодаря существованию челночных систем. В малат/аспартатной челночной системе электроны и протоны переносятся с НАДН на малат, в глицерофосфатной челночной системе — на глицерол-3-фосфат. | НАДН образуется в цитозоле ферментом глицеральдегид-3-фосфатдегидрогеназой. Для окисления в дыхательной цепи, сопряженного с [[Синтез АТФ|синтезом АТФ]], он должен проникнуть в матрикс митохондрии, однако внутренняя мембрана митохондрии непроницаема для НАДН. Эта проблема решается благодаря существованию челночных систем. В малат/аспартатной челночной системе электроны и протоны переносятся с НАДН на малат, в глицерофосфатной челночной системе — на глицерол-3-фосфат. | ||
Строка 10: | Строка 7: | ||
'''Глицерофосфатная челночная система'''. Цитозольный фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны с НАДН на дигидроксиацетонфосфат. При этом образуется глицерол-3-фосфат. Расположенный во внутренней мембране митохондрии фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны от глицерол-3-фосфата на свою простетическую группу ФАД. Образовавшийся ФАДН2 передает протоны и электроны в дыхательную цепь, что обеспечивает синтез 1,5 молекул АТФ В этой реакции снова образуется дигидроксиацетонфосфат, и оборот цикла завершается. | '''Глицерофосфатная челночная система'''. Цитозольный фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны с НАДН на дигидроксиацетонфосфат. При этом образуется глицерол-3-фосфат. Расположенный во внутренней мембране митохондрии фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны от глицерол-3-фосфата на свою простетическую группу ФАД. Образовавшийся ФАДН2 передает протоны и электроны в дыхательную цепь, что обеспечивает синтез 1,5 молекул АТФ В этой реакции снова образуется дигидроксиацетонфосфат, и оборот цикла завершается. | ||
+ | [[Image:Bio_wiki_16_2.jpg|250px|thumb|none|Рис. 16.2. Малат/аспартатная челночная система и глицерофосфатная челночная система переносят восстановленные эквивалент из цитозоля в митохондрии]] | ||
== Читайте также == | == Читайте также == | ||
*[[Анаэробное окисление глюкозы]] | *[[Анаэробное окисление глюкозы]] |
Текущая версия на 17:38, 18 мая 2016
Аэробное окисление глюкозы для получения энергии в виде АТФ[править | править код]
Малат/аспартатная челночная система и глицерофосфатная челночная система[править | править код]
НАДН образуется в цитозоле ферментом глицеральдегид-3-фосфатдегидрогеназой. Для окисления в дыхательной цепи, сопряженного с синтезом АТФ, он должен проникнуть в матрикс митохондрии, однако внутренняя мембрана митохондрии непроницаема для НАДН. Эта проблема решается благодаря существованию челночных систем. В малат/аспартатной челночной системе электроны и протоны переносятся с НАДН на малат, в глицерофосфатной челночной системе — на глицерол-3-фосфат.
Малат/аспартатная челночная система. Цитозольная малат-дегидрогеназа переносит электроны и протоны с НАДН на оксалоацетат, образуя малат. Транслоказа дикарбоновых кислот переносит малат в митохондрию, взамен транспортируя в цитозоль а-кетоглутарат. Митохондриальная малатдегидрогеназа переносит электроны и протоны с малата на НАД+ с образованием оксалоацетата и НАДН. НАДН окисляется в дыхательной цепи и обеспечивает синтез 2,5 молекул АТФ. Для завершения цикла оксалоацетат в реакции трансамини-рования превращается в аспартат, который выходит в цитозоль и там превращается в оксалоацетат.
Глицерофосфатная челночная система. Цитозольный фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны с НАДН на дигидроксиацетонфосфат. При этом образуется глицерол-3-фосфат. Расположенный во внутренней мембране митохондрии фермент глицерол-3-фосфатдегидрогеназа переносит электроны и протоны от глицерол-3-фосфата на свою простетическую группу ФАД. Образовавшийся ФАДН2 передает протоны и электроны в дыхательную цепь, что обеспечивает синтез 1,5 молекул АТФ В этой реакции снова образуется дигидроксиацетонфосфат, и оборот цикла завершается.