Вверх

Спорт-вики — википедия научного бодибилдинга

Изменения

Перейти к: навигация, поиск

Синаптическая передача

33 373 байта добавлено, 10 лет назад
Новая страница: «{{Клинфарм1}} == СИНАПТИЧЕСКАЯ ПЕРЕДАЧА В ВЕГЕТАТИВНОЙ И СОМАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЕ == П…»
{{Клинфарм1}}
== СИНАПТИЧЕСКАЯ ПЕРЕДАЧА В ВЕГЕТАТИВНОЙ И СОМАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЕ ==

Первые прямые экспериментальные доказательства теории химической передачи нервного импульса были получены около ста лет назад (von Euler, 1981); в последующие годы эта теория бурно развивалась, и в настоящее время считается общепризнанной. Передача возбуждения в большинстве синапсов осуществляется с помощью химических веществ — медиаторов (нейромедиаторов, нейротрансмиттеров). Действие многих лекарственных средств, влияющих на гладкие мышцы, сердце и железы, обусловлено именно тем, что они воспроизводят или изменяют эффекты медиаторов на уровне вегетативных ганглиев либо исполнительных органов.

Многие закономерности медиаторной передачи в вегетативной нервной системе справедливы также для нервно-мышечных и центральных синапсов. Более того, именно исследования в области физиологии вегетативной нервной системы в значительной степени помогли понять, как происходит межнейронная передача в ЦНС (гл. 12). Как в центральных, так и в периферических синапсах действуют механизмы синтеза, запасания, высвобождения, инактивации и распознавания медиатора. Основными медиаторами вегетативной нервной системы служат ацетилхолин и норадреналин. Вспомогательное действие оказывают другие медиаторы, в том числе пептиды, пурины и N0.

Для понимания эффектов препаратов, действующих на уровне вегетативной нервной системы, — вегетотропных средств — необходимо ясно представлять себе анатомию и физиологию этой системы. Влияние подобных препаратов на внутренние органы часто можно предсказать, если знать, как реагируют эти органы на раздражение вегетативных нервов. В настоящей главе мы рассмотрим анатомию, биохимию и физиологию вегетативной и соматической нервной системы.

== Этапы синаптической передачи ==

Знание этапов синаптической передачи чрезвычайно важно, так как многие препараты действуют на те или иные из них. Синаптическая передача включает распространение нервного импульса на пресинаптическое окончание и собственно передачу сигнала через синаптическую щель. Что касается первого этапа — распространения нервного импульса, — то на него, за исключением местных анестетиков, лекарственные средства почти не действуют, и поэтому мы разберем его лишь вкратце.

=== Распространение нервного импульса ===

Наши знания о механизмах возникновения и распространения нервного импульса в значительной степени базируются на основополагающих работах Ходжкина и Хаксли (1952).

В покое нервные клетки заряжены изнутри отрицательно, а снаружи — положительно; трансмембранная разность потенциалов в типичном аксоне при этом составляет около 70 мВ. Этот так называемый потенциал покоя представляет собой диффузионный потенциал. Концентрация К+ в аксоплазме в 40 раз выше, чем во внеклеточной среде, а мембрана для этого иона в покое высоко проницаема. Напротив, концентрации Na+ и СГ во внеклеточной среде выше, чем в аксоплазме, но мембрана в покое их почти не пропускает, и поэтому их вклад в потенциал покоя невелик. Эти концентрационные градиенты поддерживаются за счет системы активного транспорта (насоса), представляющей собой АТФазу, активируемую повышением внеклеточной концентрации Na+ и внутриклеточной — К+ (Hille, 1992; Hille et al., 1999a).

Если какой-либо участок мембраны деполяризовать до критического уровня, то в этом участке возникает потенциал действия. Он состоит из двух фаз. Первая — фаза деполяризации — обусловлена быстрым повышением натриевой проницаемости. Это повышение, в свою очередь, обусловлено тем, что в ответ на деполяризацию открываются потенциалзависимые натриевые каналы. В результате Na+ входит в клетку и деполяризует ее; на пике потенциала действия мембранный потенциал становится положительным (реверсия, или овершут). Затем следует фаза реполяризации, обусловленная инактивацией натриевых каналов и задержанным открыванием потенциалзависимых калиевых каналов; калий выходит из клетки, возвращая мембранный потенциал к уровню покоя. Видимо, инактивация натриевых каналов обусловлена потенциалзависимым изменением конформации некоего гидрофобного белка, который при этом перекрывает вход в канал со стороны цитоплазмы. В некоторых клетках (например, в сердце) в генерации потенциала действия участвует Са +. Вход этого иона в клетку продлевает деполяризацию, и кроме того, повышение внутриклеточной концентрации Са + служит сигналом, запускающим многие внутриклеточные процессы (Hille, 1992; Catterall, 2000). В генерации и проведении нервного импульса в аксонах Са2+ роли не играет.

Когда в каком-либо участке нервного волокна возникает потенциал действия, то между этим и соседними участками начинают протекать местные токи. В результате эти соседние участки деполяризуются до критического уровня, и в них тоже развивается потенциал действия (предыдущий участок в это время находится в состоянии рефрактерности). Именно таким образом нервный импульс и распространяется без затухания по аксону. В миелиновых волокнах потенциал действия возникает только в перехватах Ранвье, и поэтому он распространяется по таким волокнам скачкообразно (так называемое сальтаторное распространение) с высокой скоростью. Яд иглобрюха тетродотоксин и близкий к нему яд некоторых моллюсков сакситоксин избирательно подавляют возникновение и проведение потенциала действия, блокируя быстрые натриевые каналы. Напротив, батрахотоксин — чрезвычайно мощный стероидный алкалоид, содержащийся в яде некоторых видов короткоголовых лягушек из рода листолазов (Phyllobates), — увеличивает проницаемость быстрых натриевых каналов; в результате развивается постоянная деполяризация, и возникновение потенциала действия подавляется. Яды скорпионов также вызывают стойкую деполяризацию, но другим путем — они устраняют инактивацию натриевых каналов (Catterall, 2000). Подробнее натриевые и кальциевые каналы рассматриваются в гл. 15, 32 и 3S.

=== Синаптическая передача ===

Поступление потенциала действия в пресинаптическое окончание запускает последовательность событий, приводящих к передаче сигнала через синапс (рис. 6.2).

1. Хранение и высвобождение медиатора. Непептидные (низкомолекулярные) медиаторы синтезируются преимущественно в пресинаптическом окончании и здесь же хранятся в синаптических пузырьках. Пептидные медиаторы (или их предшественники) синтезируются в теле нейрона и затем в крупных электроноплотных пузырьках переносятся по аксону в окончания. В покое из пресинаптических окончаний постоянно выделяются отдельные кванты медиатора (соответствующие содержимому отдельных синаптических пузырьков). В постсинаптической мембране скелетной мышцы это вызывает возникновение так называемых миниатюрных потенциалов концевой пластинки. Полагают, что благодаря таким потенциалам поддерживается функциональная готовность эффекторных органов (Katz, 1969); это особенно важно для скелетных мышц, не обладающих спонтанным миоген-ным тонусом. В ответ на поступление потенциала действия из пресинаптического окончания выбрасывается несколько сотен квантов медиатора. Этот выброс запускается деполяризацией пресинаптического окончания; в большинстве окончаний (но не во всех) связующим звеном между деполяризацией и выходом медиатора служит поступление в аксоплазму Са2+, вызывающее слияние синаптических пузырьков с пресинаптической мембраной (Meiret al., 1999; Hille et al., 1999a). После слияния с мембраной пузырьки посредством экзоцитоза высвобождают свое содержимое (медиатор, ферменты, другие белки) в синаптическую щель. Возможно как полное слияние пузырьков с мембраной с последующим обратным процессом (эндоцитозом), так и образование временной поры, через которую выходит медиатор (Murthy and Stevens, 1998).

Пресинаптическое окончание можно рассматривать как самостоятельную структуру, содержащую все необходимое для образования пузырьков, их экзоцитоза и эндоцитоза, синтеза и обратного захвата медиатора (Femandez-Chacon and Sudhof, 1999; Lin and Scheller, 1997).

Синаптические пузырьки располагаются в особых участках у пресинаптической мембраны, называемых активными зонами. Эти участки часто бывают расположены напротив субсинаптических складок. В пузырьках обнаружено 20—40 различных белков, отвечающих за перенос веществ через мембрану пузырьков и за экзоцитоз последних. Транспорт медиаторов в пузырьки осуществляется за счет электрохимического градиента, создаваемого Н+-АТФазой (протонным насосом).

Рисунок 6.2. Этапы передачи сигнала в возбуждающем и тормозном синапсах. 1. Потенциал действия — это распространяющееся колебание мембранного потенциала, при котором заряд внутренней поверхности мембраны временно меняется с отрицательного на положительный. Эти изменения обусловлены входом Na* с последующим выходом К . Когда потенциал действия приходит в пресинаптическое окончание, он вызывает высвобождение возбуждающего или тормозного медиатора. Механизм этого высвобождения следующий: деполяризация пресинаптического окончания приводит к входу в него Са2 , вызывающего сначала прикрепление, а затем слияние синаптических пузырьков с пресинаптической мембраной. 2. Соединение возбуждающего медиатора с постсинаптическими рецепторами приводит к местной деполяризации — ВПСП. Она обусловлена открыванием катионных, и особенно натриевых, каналов. Тормозный медиатор вызывает открывание каналов для К и СП, что сопровождается местной гиперполяризацией — ТПСП. 3. Поддействием ВПСП в постсинаптиче-ском нейроне возникает распространяющийся потенциал действия; ТПСП этому препятствует. Выделившийся медиатор инактивируется путем ферментативного распада, захвата пресинаптическим окончанием или соседними клетками глии или диффузии из синаптической щели. МП — мембранный потенциал, ПД — потенциал действия. Eccles, 1964,1973; Katz, 1966; Catterall, 1992; Jann and Sudhof, 1994.

Роль белков, ответственных за экзоцитоз, менее изучена. Известно, что белок пузырьков синаптобревин (он же VAMP — vesicle-associated membrane protein, везикулярный мембранный белок) соединяется с белками пресинаптической мембраны SNAP-25 (synaptosomal-associated protein of 25 kDa — синаптосомный белок с молекулярной массой 25 ООО) и синтаксином-1, образуя комплекс, запускающий или направляющий процесс слияния пузырьков с мембраной. Синаптобревин, SNAP-25 и синтаксин-1 называют белками SNARE (SNAP receptor — рецепторы SNAP, или soluble N-ethylmaleimide-sensitive-factor attachment protein receptor — растворимые, чувствительные к N-этилмалеимиду рецепторы стыковочных белков). Вызванный Са2+ экзоцитоз пузырьков, протекающий за доли миллисекунды, видимо, обеспечивается отдельным семейством белков — синаптотагминами.

ГТФ-связывающие белки подсемейства Rab-З регулируют слияние и повторное образование пузырьков. Функция этих белков связана с гидролизом ГТФ. Определенную роль в слиянии пузырьков с мембраной и экзоцитозе играют и другие, менее изученные регуляторные белки — синапсин, синаптофизин, синаптогирин и обнаруженные в активных зонах белки RIM (Rab3-interacting molecules — молекулы, реагирующие с Rab-З) и нейрексины. Многие из этих белков гомологичны тем, что отвечают за везикулярный транспорт в дрожжевых грибах.

За последние 30 лет было обнаружено множество пресинаптических рецепторов, от активации которых зависит выброс медиатора и, следовательно, синаптическая передача (Langer, 1997; MacDermott et al., 1999; von Kugelgen et al., 1999). Эти рецепторы оказались почти столь же многочисленными, как и постсинаптические рецепторы, и они также могут быть облегчающими или тормозными. Они могут активироваться как медиаторами других нейронов, так и медиатором того же самого нейрона после его выброса в синаптическую щель. В последнем случае они называются ауторецепторами. Так, норадреналин может взаимодействовать с пресинаптическими а2-адренорецепторами, подавляя тем самым собственное дальнейшее высвобождение. Активация таких же рецепторов приводит к снижению выброса ацетилхолина из холинергических окончаний. Активация пресинаптических М-холинорецепторов также угнетает высвобождение ацетилхолина (Wessler, 1992) и влияет на выброс норадреналина из симпатических окончаний в сердце и сосудах. Активация пресинаптических N-холинорецепторов усиливает выделение медиатора из окончаний мотонейронов (Bowman et al., 1990) и ряда других центральных и периферических нейронов (MacDermott et al., 1999).

На высвобождение медиатора в разных нейронах влияют также аденозин, дофамин, глутамат, ГАМК, простагландины и энкефалины. Этот модулирующий эффект частично обусловлен тем, что активация соответствующих рецепторов меняет проницаемость пресинаптических каналов (Tsien et al., 1988; Miller, 1998). Действительно, некоторые такие каналы непосредственно регулируют выброс медиатора из пресинаптических окончаний (Meir etal., 1999).

2. Соединение медиатора с рецептором и возникновение постсинаптического потенциала. После высвобождения в синаптическую щель медиатор диффундирует через нее и соединяется со специализированным рецептором на постсинаптической мембране. Это часто приводит к местному изменению ионных проницаемостей. За редкими исключениями (см. ниже), эти изменения бывают следующих трех типов: 1) повышение проницаемости для всех катионов (в основном для Na+, но также для Са2+). Это приводит 1 местной деполяризации, называемой ВПСП, 2) избирательное повышение проницаемости для анионов (обычно для СГ). В результате происходит стабилизация мембранного потенциала либо гиперполяризация — ТПСП, 3) повышение проницаемости для К+.

При этом также наблюдаются стабилизация мембранного потенциала и гиперполяризация (ТПСП).

Важно подчеркнуть, что постсинаптические потенциалы обусловлены пассивным током ионов в направлении их электрохимических градиентов. Эти токи возникают потому, что в результате соединения медиаторов с соответствующими рецепторами меняются проницаемости ионных каналов (см. ниже и гл. 12). Рецепторы могут либо располагаться в области специализированной постсинаптической мембраны (как, например, в нервно-мышечном и других четко оформленных синапсах), либо быть диффузно разбросанными по мембране (как в случае гладких мышц).

С помощью микроэлектродов, плотно присасывающихся к мембране, стало возможным регистрировать токи через одиночные каналы, в том числе связанные с рецепторами медиаторов (Hille, 1992). В присутствии медиатора канал периодически быстро открывается, остается в открытом состоянии примерно 1 мс и затем вновь закрывается. При этом регистрируется короткий П-образный импульс тока. В результате суммации этих токов одиночных каналов и возникает постсинаптический потенциал. Рост постсинаптического потенциала при повышении концентрации медиатора обычно обусловлен не большей степенью открывания канала и не большей длительностью его пребывания в открытом состоянии, а увеличением частоты актов открывания. Обычно такие каналы, непосредственно связанные с рецепторами (хемочувствительные каналы, рецепторы-каналы, ионотропные рецепторы), пропускают Na+ и СГ, реже — К+ и Са2+. Эти каналы принадлежат к обширному суперсемейству ионотропных рецепторных белков, включающему N-холинорецепторы, глутаматные рецепторы, некоторые 5-НТ3-ре-цепторы и пуриновые рецепторы (все они связаны с натриевыми каналами, и их активация приводит к деполяризации, то есть к ВПСП), а также рецепторы ГАМК и глициновые рецепторы (связаны с хлорными каналами; активация приводит к гиперполяризации, то есть к ТПСП). N-холинорецепторы, 5-НТ3-рецепторы, рецепторы ГАМК и глициновые рецепторы (но не глутаматные и пуриновые рецепторы) по своему строению во многом сходны (Karlin and Akabas, 1995). Некоторые рецепторы опосредованно связаны с калиевыми и кальциевыми каналами; в таких случаях рецептор и канал — это разные белки, а сигнал к каналу от рецептора передается через G-белок (гл. 2). Наконец, существуют рецепторы, связанные с внутриклеточными системами вторых посредников. Их активация может и не сопровождаться изменениями мембранного потенциала. Наиболее известные примеры — это рецепторы, активация которых приводит к усилению или подавлению активности аденилатциклазы либо к образованию ИФ3 и, как следствие, к повышению концентрации Са2+ в цитоплазме (гл. 2).

3. Дальнейшие постсинаптические процессы. Если ВПСП превышает критический уровень, то в ближайших к постсинаптической мембране участках возбудимой мембраны открываются потенциалзависимые каналы и возникает распространяющийся потенциал действия. Так происходит в посгсинаптических нейронах и скелетных мышцах. В некоторых гладких мышцах, где распространяются даже низкоамплитудные потенциалы, ВПСП может увеличивать частоту спонтанных потенциалов действия и тем самым повышать мышечный тонус. В железах ВПСП запускает секрецию за счет повышения концентрации Са2+ в цитоплазме. ТПСП, препятствующий эффектам ВПСП, возникает в нейронах и в гладких мышцах, но не в скелетных мышцах. Конечная реакция эффекторной клетки (например, возникновение потенциала действия) зависит от результатов суммации всех постсинаптических потенциалов.

4. Инактивация медиатора. Импульсы могут проводиться через синапсы с частотой до нескольких сотен в секунду. Отсюда ясно, что должны существовать механиамы быстрого удаления медиатора из синаптической щели. В холинергических синапсах, где передача происходит особенно быстро, это удаление обеспечивается присутствием в синаптической щели фермента АХЭ в высокой концентрации. Если активность АХЭ подавить ингибиторами, то инактивация ацетилхолина будет осуществляться только за счет его диффузии из синаптической щели и его действие будет более сильным и длительным.

Норадреналин инактивируется путем диффузии из синаптической щели и обратного захвата адренергическим окончанием (Iversen, 1975). Инактивация аминокислотных медиаторов обеспечивается их активным захватом нейронами и глией. Пептидные медиаторы гидролизуются пептидазами и диффундируют из синаптической щели; механизмов обратного захвата для этих медиаторов не обнаружено.

5. Трофическое действие медиаторов. Как уже говорилось, в синапсе происходит постоянное выделение квантов медиатора. Этого количества недостаточно для того, чтобы вызвать явный ответ постсинаптической клетки, но, видимо, оно играет важную роль в обеспечении готовности синапса к передаче сигнала. Возможно, это так называемое трофическое действие медиатора (или неких других трофических факторов, выделяемых нервными окончаниями) поддерживает активность и обновление ферментов синтеза медиатора, плотность пре- и постсинаптических рецепторов и другие важные для синаптической передачи процессы (Reichardt and Farinas, 1997; Sanes and Lichtman, 1999).

Навигация