Спорт-вики — википедия научного бодибилдинга

Редактирование: Рост мышц

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
{{Expert}}
 
== Рост мышц ==
 
 
Во время упражнений мышечная работа, совершаемая  при прогрессивно нарастающей перегрузке, приводит к увеличению мышечной массы и площади поперечного сечения мышц, называемой [[Гипертрофия мышц|гипертрофией]]. И [[Сердечно-сосудистая система|сердце]] и [[скелетные мышцы]] способны адаптироваться к регулярному нарастанию рабочей нагрузки. В случае сердечной мышцы, сердце становится более эффективным при выталкивании крови из камер, а скелетные мышцы становятся более эффективными при передаче силы через сухожилия на кости.
 
 
Хотя ученые активно исследуют этот вопрос, до сих пор не в полной мере понятна цельная (и очень сложная) картина того, как мышцы адаптируются к постепенной стимуляции перегрузкой.
 
 
В этой статье представлен краткий, но емкий обзор литературы, чтобы лучше понять многогранное явление гипертрофии скелетных мышц.
 
 
 
=== Мышечная гипертрофия ===  
 
=== Мышечная гипертрофия ===  
  
'''Мышечная гипертрофия''' - это увеличение мышечной массы и площади поперечного сечения мышц, обусловленное нарастанием размера (но не длины) отдельных мышечных волокон.
+
Во время упражнений мышечная работа, совершаемая  при прогрессивно нарастающей  перегрузке приводит к увеличению мышечной массы и площади поперечного сечения мышц, называемой гипертрофией.  
  
''Читайте также:'' [[Гипертрофия мышц]]
+
'''Мышечная гипертрофия''' - это увеличение мышечной массы и площади поперечного сечения  мышц, обусловленое нарастанием размера (но не длины) отдельных мышечных волокон.
  
'''Основные функции скелетных мышц:'''
+
И сердце и скелетные мышцы  способны адаптироваться к регулярному  нарастанию рабочей нагрузки. В случае  сердечной мышцы, сердце становится более эффективным при выталкивании крови из камер, а скелетные мышцы становятся более эффективными при передаче силы через сухожилия на  кости.
  
*Сокращение, чтобы вызвать движение тела;
+
'''Скелетные мышцы имеет две основные функции:'''
*Стабильность, чтобы обеспечивать положения тела.  
+
*сокращание, чтобы вызвать движение тела
 +
*стабильность, чтобы обеспечивать положения тела.  
 
   
 
   
 
Каждая скелетная мышца должна иметь возможность сокращаться с различным напряжением для выполнения этих функций. Прогрессивное отягощение является средством создания разнообразного и переменного стресса в скелетных мышцах, что заставляет их адаптироваться путем соответствующего напряжения. Мышца способна адаптироваться к нагрузке, увеличивая размер и число сократительных белков,  из которых состоят  миофибриллы в пределах каждого мышечного волокна, что приводит к увеличению размеров отдельных мышечных волокон и их последующей мощности <ref>Russell, B., D. Motlagh,, and W. W. Ashley. Form follows functions: how muscle shape is regulated by work. Journal of Applied Physiology 88: 1127-1132, 2000.</ref>.
 
Каждая скелетная мышца должна иметь возможность сокращаться с различным напряжением для выполнения этих функций. Прогрессивное отягощение является средством создания разнообразного и переменного стресса в скелетных мышцах, что заставляет их адаптироваться путем соответствующего напряжения. Мышца способна адаптироваться к нагрузке, увеличивая размер и число сократительных белков,  из которых состоят  миофибриллы в пределах каждого мышечного волокна, что приводит к увеличению размеров отдельных мышечных волокон и их последующей мощности <ref>Russell, B., D. Motlagh,, and W. W. Ashley. Form follows functions: how muscle shape is regulated by work. Journal of Applied Physiology 88: 1127-1132, 2000.</ref>.
Строка 25: Строка 17:
 
Физиология гипертрофии скелетных мышц исследует роль и взаимодействие клеток-сателлитов, реакции иммунной системы и  факторов роста.  
 
Физиология гипертрофии скелетных мышц исследует роль и взаимодействие клеток-сателлитов, реакции иммунной системы и  факторов роста.  
  
'''Клетки-сателлиты (Спутниковые клетки)'''
+
=== Клетки-сателлиты (Спутниковые клетки) ===
  
Функции  спутниковых клеток:
+
Функции  спутниковых клеток это облегчение  роста, обеспечение жизнедеятельности и восстановление поврежденной скелетной (не сердечной) мышечной ткани Эти клетки называются клетками-сателлитами, потому что расположены на наружной поверхности мышечных волокон, между сарколеммой и базальной пластинкой (верхний слой базальной мембраны) мышечного волокна. Спутниковые клетки имеют одно ядро, занимающее большую часть их объема.
 +
Обычно эти клетки находятся в состоянии покоя, но они активируются, когда мышечные волокна получают любую травму,  например,  от силовых тренировок. Спутниковые клетки затем размножаются и дочерние клетки притягиваются к поврежденному участку мышц. Затем они сливаются с существующим мышечным волокном, жертвуя  свои ядра, которые помогают регенерировать мышечные волокна. Важно подчеркнуть, что этот процесс не создает новые скелетные мышечные волокна (у  людей), но увеличивает размер и количество сократительных белков (актина и миозина) в пределах мышечного волокна. Этот период активации сателлитных клеток и пролиферации длится до 48 часов после травмы или после  сессии силовых тренировок<ref>Hawke, T.J., and D. J. Garry. Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology. 91: 534-551, 2001.</ref>.
  
*Облегчение  роста;
 
*Обеспечение жизнедеятельности;
 
*Восстановление поврежденной скелетной (не сердечной) мышечной ткани.
 
  
Клетки называются клетками-сателлитами, потому что расположены на наружной поверхности мышечных волокон, между сарколеммой и базальной пластинкой (верхний слой базальной мембраны) мышечного волокна. Спутниковые клетки имеют одно ядро, занимающее большую часть их объема. Обычно эти клетки находятся в состоянии покоя, но активируются, когда мышечные волокна получают любую травму, например, от силовых тренировок. Затем спутниковые клетки размножаются и дочерние клетки притягиваются к поврежденному участку мышц. После они сливаются с существующим мышечным волокном, жертвуя свои ядра, которые помогают регенерировать мышечные волокна. Важно подчеркнуть, что этот процесс не создает новые скелетные мышечные волокна людей), но увеличивает размер и количество сократительных белков (актина и миозина) в пределах мышечного волокна. Этот период активации сателлитных клеток и пролиферации длится до 48 часов после травмы или после  сессии силовых тренировок<ref>Hawke, T.J., and D. J. Garry. Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology. 91: 534-551, 2001.</ref>.
+
Количество сателлитных клеток, присутствующих в мышцах, зависит от типа волокон. Тип I или медленно сокращающиеся волокна, как правило, имеют в пять-шесть раз большее содержание сателлитных клеток, чем тип II (быстро-сокращающиеся волокна), в связи с повышенным кровоснабжением и большему числу капилляров(2). Это может быть связано с тем, что мышечные волокна типа 1 используются наиболее часто, и, таким образом, больше спутниковых клеток может потребоваться для текущих незначительных повреждений мышц.  
  
Количество сателлитных клеток, зависит от типа волокон. Тип I или [[Медленные мышечные волокна|'''медленно сокращающиеся волокна''']], как правило, имеют  в пять-шесть раз большее содержание сателлитных клеток, чем тип II ([[Быстрые мышечные волокна|'''быстро-сокращающиеся волокна''']]), в связи с повышенным кровоснабжением и большему числу капилляров. Это может быть связано с тем, что мышечные волокна типа 1 используются  наиболее часто, и, таким образом, больше спутниковых клеток может потребоваться для текущих незначительных повреждений мышц.
+
=== Иммунология ===
 
 
Исследователи из Медицинского центра Университета Рочестера обнаружили<ref>https://www.urmc.rochester.edu/news/story/4788/stem-cells-may-be-the-key-to-staying-strong-in-old-age.aspx</ref>, что потеря мышечных стволовых клеток является главной движущей силой снижения мышечной массы у пожилых людей. Их нахождение ставит под сомнение существующую теорию, согласно которой возрастное сокращение мышц вызвано прежде всего потерей моторных нейронов.
 
 
 
'''[[Иммунная система|Иммунология]]'''
 
  
 
Как было описано ранее,  силовые упражнения вызывают травмы скелетных мышц. Иммунная система реагирует сложной последовательностью реакций, ведущих к воспалению<ref>Shephard, R. J. and P.N. Shek. Immune responses to inflammation and trauma: a physical training model. Canadian Journal of Physiology and Pharmacology 76: 469-472, 1998.</ref>. Цель воспалительного ответа это сдержать зону повреждения, восстановить ущерб, а также очистить травмированную область.
 
Как было описано ранее,  силовые упражнения вызывают травмы скелетных мышц. Иммунная система реагирует сложной последовательностью реакций, ведущих к воспалению<ref>Shephard, R. J. and P.N. Shek. Immune responses to inflammation and trauma: a physical training model. Canadian Journal of Physiology and Pharmacology 76: 469-472, 1998.</ref>. Цель воспалительного ответа это сдержать зону повреждения, восстановить ущерб, а также очистить травмированную область.
  
Иммунная система запускает последовательность событий в ответ на повреждение  скелетных мышц. Макрофаги, участвующие в фагоцитозе (процессе, при котором определенные клетки поглощают и разрушают микроорганизмы и продукты распада  из поврежденных клеток), передвигаются в место травмы и выделяют цитокины, факторы роста и другие вещества. Цитокины являются белками - "дирижерами" иммунной системы. Они несут ответственность за связи между клетками в организме. Цитокины стимулируют прибытие лимфоцитов, нейтрофилов, моноцитов и других клеток в место повреждения, чтобы  восстановить ткань <ref>Pedersen, B. K. Exercise Immunology. New York: Chapman and Hall; Austin: R. G. Landes, 1997. </ref>.  
+
Иммунная система запускает последовательность событий в ответ на повреждение  скелетных мышц. Макрофаги, участвующие в фагоцитозе (процессе, при котором определенные клетки поглощают и разрушают микроорганизмы и продукты распада  из поврежденных клеток), передвигаются в место травмы и выделяют цитокины, факторы роста и другие вещества. Цитокины являются белками-"дирижерами"иммунной системы. Они несут ответственность за связи между клетками в организме. Цитокины стимулируют прибытие лимфоцитов, нейтрофилов, моноцитов и других клеток в место повреждения, чтобы  восстановить ткань <ref>Pedersen, B. K. Exercise Immunology. New York: Chapman and Hall; Austin: R. G. Landes, 1997. </ref>.  
  
Тремя важнейшими цитокинами, имеющими отношение к физическим  упражнениям являются интерлейкин-1 (ИЛ-1), интерлейкин-6 (ИЛ-6), и фактор некроза опухоли (ФНО). Эти цитокины  обеспечивают большую часть воспалительной реакции, поэтому  их называют "воспалительными или провоспалительными цитокинами" <ref>Pedersen, B. K. and L Hoffman-Goetz. Exercise and the immune system: Regulation, Integration, and Adaptation. Physiology Review 80: 1055-1081, 2000.</ref>. Они несут ответственность за распад белков, удаление поврежденных мышечных клеток, и увеличение производства простагландинов (гормоноподобных веществ, которые помогают контролировать воспаление).  
+
Тремя важнейшими цитокинами, имеющими отношение к физическим  упражнениям являются интерлейкин-1 (ИЛ-1), интерлейкин-6 (ИЛ-6), и фактор некроза опухоли (ФНО). Эти цитокины  обеспечивают большую часть воспалительной реакции, поэтому  их называют "воспалительными или провоспалительными цитокинами" <ref>Pedersen, B. K. and L Hoffman-Goetz. Exercise and the immune system: Regulation, Integration, and Adaptation. Physiology Review 80: 1055-1081, 2000.</ref>. Они несут ответственность за распад белков, удаление поврежденных мышечных клеток, и увеличение производства простагландинов (гормоноподобных веществ, которые помогают контролировать воспаление).  
  
 
=== Факторы роста ===
 
=== Факторы роста ===
 +
Факторы роста являются высокоспецифичными белками, включающими  в себя гормоны и цитокины, которые принимают очень активное участие в явлении мышечной гипертрофии <ref>Adams, G.R., and F. Haddad. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. Journal of Applied Physiology 81(6): 2509-2516, 1996.</ref>. Факторы роста стимулируют деление и дифференцировку (приобретение одной или более характеристик, отличающих от исходной клетки) конкретного типа клеток. Факторы роста, представляющие особый интерес в  связи с гипертрофией скелетных мышц,  это инсулиноподобный фактор роста (IGF), фактор роста фибробластов (FGF) и фактор роста гепатоцитов (HGF). Данные факторы роста работают в сочетании друг с другом, чтобы вызвать гипертрофию скелетных мышц.
  
Факторы роста являются высокоспецифичными белками, включающими  в себя гормоны и цитокины, которые принимают очень активное участие в явлении мышечной гипертрофии <ref>Adams, G.R., and F. Haddad. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. Journal of Applied Physiology 81(6): 2509-2516, 1996.</ref>. Факторы роста стимулируют деление и дифференцировку (приобретение одной или более характеристик, отличающих от исходной клетки) конкретного типа клеток. Факторы роста, представляющие особый интерес в связи с гипертрофией скелетных мышц, это инсулиноподобный фактор роста (IGF), фактор роста фибробластов (FGF) и фактор роста гепатоцитов (HGF). Данные факторы роста работают в сочетании друг с другом, чтобы вызвать гипертрофию скелетных мышц.
+
=== Инсулиноподобный фактор роста ===
 
 
'''[[Инсулиноподобный фактор роста]]'''
 
  
IGF является гормоном, который секретируется  в скелетных мышцах. Он регулирует метаболизм [[инсулин]]а и стимулирует синтез белка. Есть две формы, IGF-I, который вызывает пролиферацию и дифференцировку клеток-сателлитов и IGF-II, который отвечает за распространение сателлитных клеток. В ответ на перегрузку уровень IGF-I повышается, что приводит к гипертрофии скелетных мышц <ref>Fiatarone Singh, M. A., W. Ding, T. J. Manfredi, et al. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. American Journal of Physiology 277 (Endocrinology Metabolism 40): E135-E143, 1999.</ref>.  
+
IGF является гормоном, который секретируется  в скелетных мышцах. Он регулирует метаболизм инсулина и стимулирует синтез белка. Есть две формы, IGF-I, который вызывает пролиферацию и дифференцировку клеток-сателлитов и IGF-II, который отвечает за распространение сателлитных клеток. В ответ на перегрузку уровень IGF-I повышается, что приводит к гипертрофии скелетных мышц <ref>Fiatarone Singh, M. A., W. Ding, T. J. Manfredi, et al. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. American Journal of Physiology 277 (Endocrinology Metabolism 40): E135-E143, 1999.</ref>.  
  
'''[[Факторы роста фибробластов|Фактор роста фибробластов]]'''
+
=== Фактор роста фибробластов ===
  
 
FGF содержится в скелетных мышцах. FGF имеет девять форм, пять из которых вызывают пролиферацию и дифференцировку спутниковых клеток, что приводит к гипертрофии скелетных мышц. Количество FGF выделяемого в скелетных мышцах, прямо  пропорционально степени мышечной травмы<ref>Yamada, S., N. Buffinger, J. Dimario, et al. Fibroblast Growth Factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Medicine and Science in Sports and Exercise 21(5): S173-180, 1989.</ref>.  
 
FGF содержится в скелетных мышцах. FGF имеет девять форм, пять из которых вызывают пролиферацию и дифференцировку спутниковых клеток, что приводит к гипертрофии скелетных мышц. Количество FGF выделяемого в скелетных мышцах, прямо  пропорционально степени мышечной травмы<ref>Yamada, S., N. Buffinger, J. Dimario, et al. Fibroblast Growth Factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Medicine and Science in Sports and Exercise 21(5): S173-180, 1989.</ref>.  
  
'''Фактор роста гепатоцитов'''
+
=== Фактор роста гепатоцитов ===
  
HGF представляет собой цитокин с различными функциями в клетке. Конкретные к гипертрофии скелетных мышц, ФРГ активизирует клетки-сателлиты и может нести ответственность за  миграцию спутниковых клеток к поврежденной области.
+
HGF представляет собой цитокин с различными функциями в клетке. Конкретные к гипертрофии скелетных мышц, ФРГ активизирует клетки-сателлиты и может нести ответственность за  миграцию спутниковых клеток к поврежденной области.  
  
 
=== Роль гормонов в гипертрофии скелетных мышц ===
 
=== Роль гормонов в гипертрофии скелетных мышц ===
Строка 67: Строка 52:
 
Гормоны представляют собой химические вещества, которые органы выделяют  для инициации или регуляции активности органа или группы клеток в другой части тела. Следует отметить, что  на функцию гормонов влияет состояние питания, потребление продуктов питания и такие факторы образа жизни как стресс, сон, и общее состояние здоровья. Следующие гормоны представляют особый интерес для  гипертрофии скелетных мышц.  
 
Гормоны представляют собой химические вещества, которые органы выделяют  для инициации или регуляции активности органа или группы клеток в другой части тела. Следует отметить, что  на функцию гормонов влияет состояние питания, потребление продуктов питания и такие факторы образа жизни как стресс, сон, и общее состояние здоровья. Следующие гормоны представляют особый интерес для  гипертрофии скелетных мышц.  
  
'''[[Гормон роста]]'''
+
=== Гормон роста ===
  
Гормон роста  является пептидным гормоном, который стимулирует иммуноферментные реакции в скелетных мышцах, способствуя активации сателлитных клеток, пролиферации и дифференцировке<ref>Frisch, H. Growth hormone and body composition in athletes. Journal of Endocrinology Investigation 22: 106-109, 1999.</ref>. Однако, наблюдаемые эффекты  роста мышц от дополнительного введения ГР, исследуемые в группах,  получающих гормон роста и  выполняющих силовые упражнения, могут быть меньше связаны с увеличением сократительных белков и больше с задержкой жидкости и накоплением соединительной ткани.  
+
Гормон роста  является пептидным гормоном, который стимулирует ИФР в скелетных мышцах, способствуя активации сателлитных клеток, пролиферации и дифференцировке<ref>Frisch, H. Growth hormone and body composition in athletes. Journal of Endocrinology Investigation 22: 106-109, 1999.</ref>. Однако, наблюдаемые эффекты  роста мышц от дополнительного введения ГР, исследуемые в группах,  получающих гормон роста и  выполняющих силовые упражнения, могут быть меньше связаны с увеличением сократительных белков и больше с задержкой жидкости и накоплением соединительной ткани.  
  
'''[[Кортизол]]'''
+
=== Кортизол ===
  
Кортизол является стероидным гормоном (гормоном, который имеет стероидную основу, и может  проходить через клеточную мембрану без рецептора), который производится в коре надпочечников. Это гормон стресса, который стимулирует [[глюконеогенез]],  то есть образование глюкозы из других источников, таких как [[аминокислоты]] и свободные жирные кислоты. Кортизол также ингибирует потребление глюкозы большинством клеток организма. Он инициирует  катаболизм белков, тем самым высвобождая аминокислоты, которые будут использоваться для создания различных белков, которые могут быть необходимы во время стресса.  
+
Кортизол является стероидным гормоном (гормоном, который имеет стероидную основу, и может  проходить через клеточную мембрану без рецептора), который производится в коре надпочечников. Это гормон стресса, который стимулирует глюконеогенез,  то есть образование глюкозы из других источников, таких как аминокислоты и свободные жирные кислоты. Кортизол также ингибирует потребление глюкозы большинством клеток организма. Он инициирует  катаболизм белков, тем самым высвобождая аминокислоты, которые будут использоваться для создания различных белков, которые могут быть необходимы во время стресса.  
  
С точки зрения гипертрофии, увеличение кортизола связано с повышенным [[катаболизм]]ом белков. Таким образом, кортизол разрушает мышечные белки, ингибируя рост скелетных мышц<ref>Izquierdo, M., K Hakkinen, A. Anton, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Medicine and Science in Sports Exercise 33 (9): 1577-1587, 2001.</ref>.  
+
С точки зрения гипертрофии, увеличение кортизола связано с повышенным катаболизмом белков. Таким образом, кортизол разрушает мышечные белки, ингибируя рост скелетных мышц<ref>Izquierdo, M., K Hakkinen, A. Anton, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Medicine and Science in Sports Exercise 33 (9): 1577-1587, 2001.</ref>.  
  
'''[[Тестостерон]]'''
+
=== Тестостерон ===
  
Тестостерон является [[Андрогенная активность|андрогеном]], или мужским половым гормоном. Основная физиологическая роль андрогенов  это содействие росту и развитию мужских органов и признаков. Тестостерон влияет на нервную систему, скелетные мышцы, костный мозг, кожу, волосы и половые органы.  
+
Тестостерон является андрогеном, или мужским половым гормоном. Основная физиологическая роль андрогенов  это содействие росту и развитию мужских органов и признаков. Тестостерон влияет на нервную систему, скелетные мышцы, костный мозг, кожу, волосы и половые органы.  
В скелетных мышцах тестостерон, который вырабатывается в значительно больших количествах у мужчин, имеет [[Андрогенная активность|анаболический  эффект]]. Это способствует гендерным различиям, наблюдаемым в [[Индекс массы тела|массе тела]] и сложении мужчин и женщин. Тестостерон увеличивает синтез белка, что индуцирует гипертрофию <ref>Vermeulen, A., S. Goemaere, and J. M. Kaufman. Testosterone, body composition and aging. Journal of Endocrinology Investigation 22: 110-116, 1999.</ref>.
+
В скелетных мышцах тестостерон, который вырабатывается в значительно больших количествах у мужчин, имеет анаболический  эффект. Это способствует гендерным различиям, наблюдаемым в массе тела и сложении мужчин и женщин. Тестостерон увеличивает синтез белка, что индуцирует гипертрофию <ref>Vermeulen, A., S. Goemaere, and J. M. Kaufman. Testosterone, body composition and aging. Journal of Endocrinology Investigation 22: 110-116, 1999.</ref>.  
  
 
== Типы волокон и гипертрофия скелетных мышц ==
 
== Типы волокон и гипертрофия скелетных мышц ==
  
Мощность, развиваемая мышцей, зависит от ее размера и состава мышечных волокон. Скелетные мышечные волокон делятся на две основные категории: [[Медленные мышечные волокна|медленно сокращающиеся]] '''(тип 1)''' и [[Быстрые мышечные волокна|быстро сокращающиеся волокна]] '''(тип II)'''. Разница между этими двумя волокнами заключается  в метаболизме, скорости сокращения, нервно-мышечных различиях, запасах гликогена, капиллярной плотности, и реакцией на гипертрофию <ref>Robergs, R. A. and S. O. Roberts. Exercise Physiology: Exercise, Performance, and Clinical Applications. Boston: WCB McGraw-Hill, 1997.</ref>.  
+
Мощность, развиваемая мышцей, зависит от ее размера и состава мышечных волокон. Скелетные мышечные волокон делятся на две основные категории: медленно сокращающиеся (тип 1) и быстро сокращающиеся волокна (тип II). Разница между этими двумя волокнами заключается  в метаболизме, скорости сокращения , нервно-мышечных различиях, запасах гликогена, капиллярной плотности, и реакцией на гипертрофию <ref>Robergs, R. A. and S. O. Roberts. Exercise Physiology: Exercise, Performance, and Clinical Applications. Boston: WCB McGraw-Hill, 1997.</ref>.  
  
 
=== Волокна типа I ===
 
=== Волокна типа I ===
  
Тип I волокна, также известные как медленные физические мышечные волокна, отвечают за поддержание позы тела и костей скелета. [[Мышцы ног#Мышцы голени|Камбаловидная мышца]] является примером преимущественно медленных мышечных волокон. Увеличение плотности капиллярной  сети  характерно  для  I типа волокон, потому что они более активно участвуют в деятельности, требующей выносливости. Эти волокна способны сокращаться  на  длительное время. Волокнам данного типа требуется меньший уровень  возбуждения, чтобы вызвать сокращение, но они и  развивают меньшую мощность. Они лучше используют [[жиры]] и [[углеводы]] из-за повышенного окислительного метаболизма (комплексной системы  обеспечения организма энергией, которая преобразует энергию от распада веществ при содействии кислорода).  
+
Тип I волокна, также известные как медленные физические мышечные волокна, отвечают за поддержание позы тела и костей скелета. Камбаловидная мышца является примером преимущественно медленных мышечных волокон. Увеличение плотности капиллярной  сети  характерно  для  I типа волокон, потому что они более активно участвуют в деятельности, требующей выносливости. Эти волокна способны сокращаться  на  длительное время. Волокнам данного типа требуется меньший уровень  возбуждения, чтобы вызвать сокращение, но они и  развивают меньшую мощность. Они лучше используют жиры и углеводы из-за повышенного окислительного метаболизма (комплексной системы  обеспечения организма энергией, которая преобразует энергию от распада веществ при содействии кислорода).  
  
Волокна типа I как  было показано, значительно гипертрофируются вследствие прогрессивной перегрузки <ref>Kraemer, W. J., S. J. Fleck, and W. J. Evans. Strength and power training: physiological mechanisms of adaptation. Exercise and Sports Science Reviews 24: 363-397, 1996.</ref><ref>Hakkinen, K., W. J. Kraemer, R. U. Newton, et al. Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiological Scandanavia 171: 51-62, 2001.</ref>. Интересно отметить, что это увеличение волокон типа I вызывается  не только [[Силовые тренировки для похудения|силовыми тренировками]], но и в некоторой степени  [[Аэробные упражнения|аэробными упражнениями]]<ref>Carter, S. L., C. D. Rennie, S. J. Hamilton, et al. Changes in skeletal muscle in males and females following endurance training. Canadian Journal of Physiology and Pharmacology 79: 386-392, 2001</ref>.  
+
Волокна типа I как  было показано, значительно гипертрофируются вследствие прогрессивной перегрузки <ref>Kraemer, W. J., S. J. Fleck, and W. J. Evans. Strength and power training: physiological mechanisms of adaptation. Exercise and Sports Science Reviews 24: 363-397, 1996.</ref><ref>Hakkinen, K., W. J. Kraemer, R. U. Newton, et al. Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiological Scandanavia 171: 51-62, 2001.</ref>. Интересно отметить, что это увеличение волокон типа I вызывается  не только силовыми тренировками, но и в некоторой степени  аэробными упражнениями<ref>Carter, S. L., C. D. Rennie, S. J. Hamilton, et al. Changes in skeletal muscle in males and females following endurance training. Canadian Journal of Physiology and Pharmacology 79: 386-392, 2001</ref>.  
  
 
=== Тип волокна II ===
 
=== Тип волокна II ===
  
Тип волокон II можно найти в мышцах, производящих большую силу на более короткие промежутки  времени, таких как [[Как накачать икроножные мышцы|икроножная]] и [[Мышцы ног#Мышцы передней поверхности бедра|латеральная широкая мышца бедра]]. Волокна II типа могут быть дополнительно разделены по классификации на тип IIa и тип IIb мышечных волокон.  
+
Тип волокон II можно найти в мышцах, производящих большую силу   на более короткие промежутки  времени, таких как икроножная и латеральная широкая мышца бедра. Волокна II типа могут быть дополнительно разделены по классификации   на тип IIa и тип IIb мышечных волокон.  
 
 
'''Тип волокон IIa'''
 
  
Тип IIa, также известный как быстрые гликолитические мышечные волокна, это гибридный вариант между типом I и IIb волокон. Тип IIa обладают характеристиками типов I и IIb волокон. Они полагаются на анаэробные реакции (производящие энергию без участия кислорода), и окислительный метаболизм, чтобы поддерживать сокращение.  
+
==== Тип волокон IIa ====
 +
Тип IIa, также известный как быстрые гликолитические мышечные волокна, это гибридный вариант   между типом I и IIb волокон. Тип IIa обладают характеристиками типов I и IIb волокон. Они полагаются на анаэробные реакции (производящие энергию без участия кислорода), и окислительный метаболизм, чтобы поддерживать сокращение.  
  
Путем  упражнений с отягощениями, а также [[Развитие выносливости|тренировок на выносливость]], тип IIb превращается в тип IIa волокон, что приводит к увеличению доли типа волокон IIa в мышце. Волокна типа IIa также увеличивают площадь поперечного сечения, что приводит к гипертрофии при [[Силовые тренировки для сжигания жира|силовых нагрузках]]. При неиспользовании и атрофии, волокна типа IIa превращаются обратно в тип IIb.  
+
Путем  упражнений с отягощениями, а также тренировок на выносливость, тип IIb превращается в тип IIa волокон, что приводит к увеличению доли типа волокон IIa в мышце. Волокна типа IIa также увеличивают площадь поперечного сечения, что приводит к гипертрофии при силовых нагрузках. При неиспользовании и атрофии, волокна типа IIa превращаются обратно в тип IIb.  
  
'''Волокна типа IIb'''
+
==== Волокна типа IIb ====
 
   
 
   
Тип IIb это быстрые гликолитические волокна. Данные волокна полагаются  только на анаэробный метаболизм для получения  энергии для сокращения,  поэтому  они имеют большое количество гликолитических ферментов. Эти волокна генерируют наибольшее количество силы за счет увеличенных размеров тел нейронов, аксонов и мышечных волокон, более высокой скорости проводимости нервов альфа-двигателя, а более высоком количестве возбуждения, необходимого для запуска потенциала действия. Хотя этот тип волокна способен генерировать наибольшее количество силы, он также сокращается на  самое короткое  время (среди всех типов мышечных волокон).  
+
Тип IIb это быстрые гликолитические волокна. Данные волокна полагаются  только на анаэробный метаболизм для получения  энергии для сокращения ,  поэтому  они имеют большое количество гликолитических ферментов. Эти волокна генерируют наибольшее количество силы за счет увеличенных размеров тел нейронов, аксонов и мышечных волокон, более высокой скорости проводимости нервов альфа-двигателя, а более высоком количестве возбуждения, необходимого для запуска потенциала действия. Хотя этот тип волокна способен генерировать наибольшее количество силы, он также сокращается на  самое короткое  время ( среди всех типов мышечных волокон).  
  
 
Волокна  типа  IIb превращаются в тип IIa во время  упражнений с отягощениями. Считается, что  силовые тренировки вызывает увеличение окислительной способности в тренированных  мышцах. так как  волокна IIa имеют больший окислительный потенциал, чем типа IIb, это изменение является положительной адаптацией к  условиям тренировки.
 
Волокна  типа  IIb превращаются в тип IIa во время  упражнений с отягощениями. Считается, что  силовые тренировки вызывает увеличение окислительной способности в тренированных  мышцах. так как  волокна IIa имеют больший окислительный потенциал, чем типа IIb, это изменение является положительной адаптацией к  условиям тренировки.
  
 
== Теории роста мышц ==
 
== Теории роста мышц ==
{{#ev:youtube|m03nxiRUJH4|300|right|Теории и механизмы роста мышц}}
+
{{#evp:youtube|m03nxiRUJH4|Теории и механизмы роста мышц|right|300}}
 
Во время упражнений мышечная работа, совершаемая  при прогрессивно нарастающей  перегрузке приводит к увеличению мышечной массы и площади поперечного сечения мышц,  называемой гипертрофией. Хотя ученые активно исследуют  этот вопрос, до сих пор не в полной мере понятна цельная (и очень сложная) картина того, как мышцы адаптируются к постепенной  стимуляции перегрузкой.<ref>Hernandez R. J., Kravitz L. The Mystery of Skeletal Muscle Hypertrophy //ACSM's Health & Fitness Journal. – 2003. – Т. 7. – №. 2. – С. 18&hyhen.</ref>  
 
Во время упражнений мышечная работа, совершаемая  при прогрессивно нарастающей  перегрузке приводит к увеличению мышечной массы и площади поперечного сечения мышц,  называемой гипертрофией. Хотя ученые активно исследуют  этот вопрос, до сих пор не в полной мере понятна цельная (и очень сложная) картина того, как мышцы адаптируются к постепенной  стимуляции перегрузкой.<ref>Hernandez R. J., Kravitz L. The Mystery of Skeletal Muscle Hypertrophy //ACSM's Health & Fitness Journal. – 2003. – Т. 7. – №. 2. – С. 18&hyhen.</ref>  
  
 
=== Теория разрушения ===
 
=== Теория разрушения ===
  
Теория разрушения гласит: «без боли нет роста» или чем больше мышцы травмируются на тренировке, тем больше они могут вырасти во время [[Отдых между тренировками|отдых]]а. На системном уровне все выглядит вполне логично: в организме поддерживается равновесие между уровнем развития мышц и получаемой нагрузкой. Если нагрузка повышается в процессе тренировки, единственным выходом для системы является — [[Адаптация мышц к нагрузке|адаптация]] путем своего усиления за счет [[Гипертрофия мышц|гипертрофии]] и [[Гиперплазия мышц|гиперплазии]]. Став сильнее система возвращается в привычное для себя равновесие, но уже относительно тех систематических нарушений своей среды, которые имеют место .
+
Теория разрушения гласит: «без боли нет роста» или чем больше мышцы травмируются на тренировке, тем больше они могут вырасти во время [[Отдых между тренировками|отдых]]а. На системном уровне все выглядит вполне логично: в организме поддерживается равновесие между уровнем развития мышц и получаемой нагрузкой. Если нагрузка повышается в процессе тренировки, единственным выходом для системы является — [[Адаптация мышц к нагрузке|адаптация]] путем своего усиления за счет [[Гипертрофия мышц|гипертрофии]] и [[Гиперплазия мышц|гиперплазии]]. Став сильнее система возвращается в привычное для себя равновесие, но уже относительно тех систематических нарушений своей среды, которые имеют место быть.
  
 
Вполне очевидно, что чем больше мы нарушили равновесие системы (чем больше ее разрушили), тем  больше она должна вырасти для того чтоб вернуть утерянное равновесие. С точки зрения равновесия энергии в природе никак иначе и быть не может.  Вот почему сторонники этой теории уверены в том, что тренироваться нужно жестоко, с болью, с [[отказ]]ами и с [[Прогрессивная нагрузка|прогрессией нагрузки]].  Ведь это все прямые признаки повреждения системы. Повреждения ваших мышц, после которых они должны стать больше.
 
Вполне очевидно, что чем больше мы нарушили равновесие системы (чем больше ее разрушили), тем  больше она должна вырасти для того чтоб вернуть утерянное равновесие. С точки зрения равновесия энергии в природе никак иначе и быть не может.  Вот почему сторонники этой теории уверены в том, что тренироваться нужно жестоко, с болью, с [[отказ]]ами и с [[Прогрессивная нагрузка|прогрессией нагрузки]].  Ведь это все прямые признаки повреждения системы. Повреждения ваших мышц, после которых они должны стать больше.
Строка 151: Строка 135:
 
== Заключение ==
 
== Заключение ==
  
Мышечная гипертрофия является многомерным процессом, в котором задействованы многочисленные факторы. Она включает в себя сложное взаимодействие клеток-сателлитов, иммунной системы, факторов роста и гормонов с отдельными мышечными волокнами каждой мышцы. Хотя наши задачи как фитнес-профессионалов и личных тренеров побуждают нас узнавать новые и более эффективные способы тренировки человеческого тела, базовое понимание того, как мышечное волокно приспосабливается к кратковременной и  постоянной нагрузке является важной основой нашей профессии.
+
Мышечная гипертрофия является многомерным процессом, в котором задействованы многочисленные факторы. Она включает в себя сложное взаимодействие клеток-сателлитов, иммунной системы, факторов роста и гормонов с отдельными мышечными волокнами каждой мышцы. Хотя наши задачи как фитнес-профессионалов и личных тренеров побуждают нас узнавать новые и более эффективные способы тренировки человеческого тела, базовое понимание того, как мышечное волокно приспосабливается к кратковременной и  постоянной нагрузке является важной основой нашей профессии.  
  
 
== Читайте также ==
 
== Читайте также ==
Строка 159: Строка 143:
 
*[[Мышечная память]]
 
*[[Мышечная память]]
 
*[[Факторы мышечного роста]]
 
*[[Факторы мышечного роста]]
*[[Гипертрофия скелетных мышц человека - Самсонова А.В.]]
 
  
 
== Источники ==
 
== Источники ==
  
 
<references/>
 
<references/>
 
[[Категория:Здоровье]][[Категория:Увеличение_силы]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблон, используемый на этой странице:

Источник — «http://sportwiki.to/Рост_мышц»