Спорт-вики — википедия научного бодибилдинга

Редактирование: Энергетические процессы в мышце

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 7: Строка 7:
 
=== АТФ ===
 
=== АТФ ===
  
Универсальным источником энергии в живом организме является молекула [[АТФ]], которая образуется в цитратном цикле Кребса. Под действием фермента АТФазы  молекула АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н<sub>3</sub>РО<sub>4</sub>), и превращается в АДФ, при этом высвобождается энергия.  
+
Универсальным источником энергии в живом организме является молекула [[АТФ]], которая образуется в цитратном цикле Крэбса. Под действием фермента АТФазы  молекула АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ, при этом высвобождается энергия.  
  
АТФ + H<sub>2</sub>O = АДФ+ Н<sub>3</sub>РО<sub>4</sub> + энергия  
+
АТФ + H2O = АДФ+ H3PO4 + энергия  
  
 
Головка миозинового мостика при контакте с актином обладает АТФазной активностью и соответственно возможностью расщеплять АТФ и получать энергию, необходимую для движения.  
 
Головка миозинового мостика при контакте с актином обладает АТФазной активностью и соответственно возможностью расщеплять АТФ и получать энергию, необходимую для движения.  
Строка 17: Строка 17:
 
=== Креатинфосфат ===
 
=== Креатинфосфат ===
  
Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения, это происходит за счет [[креатинфосфат]]а. Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.  
+
Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения, это происходит за счет креатинфосфата. Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.  
  
 
АДФ + креатинфосфат = АТФ + креатин.  
 
АДФ + креатинфосфат = АТФ + креатин.  
Строка 23: Строка 23:
 
Эта реакция получила название – реакции Ломана. Именно поэтому [[креатин]] имеет большое значение в [[бодибилдинг]]е.  
 
Эта реакция получила название – реакции Ломана. Именно поэтому [[креатин]] имеет большое значение в [[бодибилдинг]]е.  
  
Надо заметить, что креатин эффективен только при выполнении [[Анаэробные упражнения|анаэробных]] [[Силовые упражнения|(силовых) упражнений]], так как креатинфосфата достаточно примерно на 2 минуты интенсивной работы, затем подключаются другие источники энергии. Соответственно, в [[Легкая атлетика|лёгкой атлетике]] [[Как принимать креатин (научный подход)|приём креатина]] как добавки для увеличения атлетических показателей малоэффективен.
+
Надо заметить, что креатин эффективен только при выполнении [[Анаэробные упражнения|анаэробных]] (силовых) упражнений, так как креатинфосфата достаточно примерно на 2 минуты интенсивной работы, затем подключаются другие источники энергии. Соответственно в легкой атлетике прием креатина как добавки для увеличения атлетических показателей мало целесообразен.
  
Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе [[Работа мышц (энергетические процессы)|работы мышцы]], до момента активизации других более мощных источников – анаэробного и затем аэробного [[гликолиз]]а. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
+
Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников – анаэробного и затем аэробного [[гликолиз]]а. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
  
 
== Энергетический метаболизм скелетных мышц ==
 
== Энергетический метаболизм скелетных мышц ==
Строка 41: Строка 41:
 
=== Гликолиз ===  
 
=== Гликолиз ===  
  
Хотя метаболизм по гликолитическому пути производит лишь небольшое количество АТФ из каждой усвоенной единицы глюкозы, он может обеспечить быстрый синтез большого количества АТФ при наличии достаточного количества ферментов и [[Энергетические субстраты|субстрата]]. Этот процесс может также происходить в отсутствие кислорода:
+
Хотя метаболизм по гликолитическому пути производит лишь небольшое количество АТФ из каждой усвоенной единицы глюкозы, он может обеспечить быстрый синтез большого количества АТФ при наличии достаточного количества ферментов и субстрата. Этот процесс может также происходить в отсутствие кислорода:
  
 
Глюкоза анаэробный быстрый гликолиз 2 АТФ + 2 лактата (2)  
 
Глюкоза анаэробный быстрый гликолиз 2 АТФ + 2 лактата (2)  
  
Глюкоза для [[гликолиз]]а поступает либо из крови, либо из запасов [[гликоген]]а. Когда исходным материалом выступает гликоген, из одной единицы потребленной глюкозы в результате фосфоролитического гликогенолиза образуется три молекулы АТФ. По мере того, как мышечная активность становится интенсивнее, для анаэробного расщепления гликогена мышц требуется все больше и больше АТФ, и, соответственно, увеличивается производство молочной кислоты. Анаэробный гликолиз может обеспечить энергию на 1,3-1,6 мин максимальной мышечной активности.
+
Глюкоза для гликолиза поступает либо из крови, либо из запасов [[гликоген]]а. Когда исходным материалом выступает гликоген, из одной единицы потребленной глюкозы в результате фосфоролитического гликогенолиза образуется три молекулы АТФ. По мере того, как мышечная активность становится интенсивнее, для анаэробного расщепления гликогена мышц требуется все больше и больше АТФ, и, соответственно, увеличивается производство молочной кислоты. Анаэробный гликолиз может обеспечить энергию на 1,3“ 1,6 мин максимальной мышечной активности.
  
Образование [[Молочная кислота|молочной кислоты]] понижает уровень pH в мышечных волокнах. Это препятствует действию ферментов и вызывает [[Боль в мышцах после тренировки|боль]], если удаление молочной кислоты происходит слишком медленно по сравнению с ее образованием.
+
Образование молочной кислоты понижает уровень pH в мышечных волокнах. Это препятствует действию ферментов и вызывает боль, если удаление молочной кислоты происходит слишком медленно по сравнению с ее образованием.
  
=== Окислительное фосфорилирование ===
+
=== [[Окислительное фосфорилирование]] ===
[[Image:Sportnauka35.jpg|250px|thumb|right|Рис. 3. Метаболические пути синтеза АТФ, используемые во время сокращения и расслабления мышц. В то время как анаэробное расщепление КФ и гликолиз происходят в цитозоле, окислительное фосфорилирование имеет место в митохондриях.Источник: Vander et al. (1990)]]
 
:''Основная статья:'' [[Окислительное фосфорилирование]]
 
  
При умеренном уровне физической нагрузки, например, при беге на 5000 м или [[марафон]]е, большая часть АТФ, используемого для [[Сокращение скелетных мышц|сокращения мышц]], образуется путем окислительного фосфорилирования. Окислительное фосфорилирование позволяет высвободить из глюкозы гораздо больше энергии по сравнению с отдельно взятым анаэробным гликолизом:
+
При умеренном уровне физической нагрузки, например, при беге на 5000 м или марафоне,большая часть АТФ, используемого для сокращения мышц, образуется путем окислительного фосфорилирования. Окислительное фосфорилирование позволяет высвободить из глюкозы гораздо больше энергии по сравнению с отдельно взятым анаэробным гликолизом:
  
Глюкоза + O<sub>2</sub>-> 38 АТФ + СO<sub>2</sub>+ Н<sub>2</sub>O. (3)
+
Глюкоза +02-> 38 АТФ + С02+ Н20. (3)
  
[[Жиры]] катаболизируются только с помощью окислительных механизмов, при этом выделяется много энергии. [[Аминокислоты]] тоже могут быть метаболизированы подобным образом. Три метаболических пути образования АТФ для сокращения и расслабления мышц показаны на рис. 3.
+
Рис. 3. Метаболические пути синтеза АТФ, используемые во время сокращения и расслабления мышц. В то время как анаэробное расщепление КФ и гликолиз происходят в цитозоле, окислительное фосфорилирование имеет место в митохондриях.
 +
 
 +
Источник: Vander et al. (1990)
 +
 
 +
Жиры катаболизируются только с помощью окислительных механизмов, при этом выделяется много энергии. Аминокислоты тоже могут быть метаболизированы подобным образом. Три метаболических пути образования АТФ для сокращения и расслабления мышц показаны на рис. 3.
  
 
В течение первых 5~10 мин умеренной физической нагрузки главным потребляемым «топливом» является собственный гликоген мышц. В течение следующих 30 мин доминирующими становятся переносимые кровью вещества; глюкоза крови и жирные кислоты вносят примерно одинаковый вклад в потребление мышцами кислорода. По истечении этого периода все более важную роль приобретают жирные кислоты. Важно подчеркнуть взаимодействие между анаэробными и аэробными механизмами в образовании АТФ во время физической нагрузки. Вклад анаэробного образования АТФ больше при краткосрочной нагрузке высокой интенсивности, в то время как при более продолжительных нагрузках низкой интенсивности преобладает аэробный метаболизм.
 
В течение первых 5~10 мин умеренной физической нагрузки главным потребляемым «топливом» является собственный гликоген мышц. В течение следующих 30 мин доминирующими становятся переносимые кровью вещества; глюкоза крови и жирные кислоты вносят примерно одинаковый вклад в потребление мышцами кислорода. По истечении этого периода все более важную роль приобретают жирные кислоты. Важно подчеркнуть взаимодействие между анаэробными и аэробными механизмами в образовании АТФ во время физической нагрузки. Вклад анаэробного образования АТФ больше при краткосрочной нагрузке высокой интенсивности, в то время как при более продолжительных нагрузках низкой интенсивности преобладает аэробный метаболизм.
Строка 63: Строка 65:
 
=== Восстановление и кислородная задолженность ===  
 
=== Восстановление и кислородная задолженность ===  
  
После того как физическая нагрузка закончилась, поглощение кислорода все еще остается выше нормы (табл.). С недавнего времени для обозначения [[Кислородный долг|кислородной задолженности]] используется также термин «избыточное потребление кислорода после физической нагрузки». Сначала его уровень очень высок, пока тело восстанавливает запасы КФ и АТФ, возвращая тканям запасенный кислород, а затем в течение еще одного часа потребление идет на более низком уровне, пока удаляется молочная кислота. Поэтому ранние и последние фазы кислородной задолженности называют соответственно алактатной и лактатной кислородной задолженностью. Повышение температуры тела также говорит о более высокой скорости метаболизма и росте потребления кислорода.
+
После того как физическая нагрузка закончилась, поглощение кислорода все еще остается выше нормы (табл.). С недавнего времени для обозначения кислородной задолженности используется также термин «избыточное потребление кислорода после физической нагрузки». Сначала его уровень очень высок, пока тело восстанавливает запасы КФ и АТФ, возвращая тканям запасенный кислород, а затем в течение еще одного часа потребление идет на более низком уровне, пока удаляется молочная кислота. Поэтому ранние и последние фазы кислородной задолженности называют соответственно алактатной и лактатной кислородной задолженностью. Повышение температуры тела также говорит о более высокой скорости метаболизма и росте потребления кислорода.
  
 
Чем продолжительнее и интенсивнее физическая нагрузка, тем больше времени занимает восстановление. Например, на восстановление после полного истощения гликогена мышц зачастую требуется несколько дней, а не секунд, минут или часов, необходимых для восстановления запасов КФ и АТФ и удаления молочной кислоты. Физическая нагрузка большой интенсивности, вероятно, приводит к микротравмам мышечных волокон, и их восстановление занимает некоторое время.
 
Чем продолжительнее и интенсивнее физическая нагрузка, тем больше времени занимает восстановление. Например, на восстановление после полного истощения гликогена мышц зачастую требуется несколько дней, а не секунд, минут или часов, необходимых для восстановления запасов КФ и АТФ и удаления молочной кислоты. Физическая нагрузка большой интенсивности, вероятно, приводит к микротравмам мышечных волокон, и их восстановление занимает некоторое время.
Строка 99: Строка 101:
 
*[[Физиология мышечной деятельности]]
 
*[[Физиология мышечной деятельности]]
 
*[[Энергообеспечение мышечной деятельности]]
 
*[[Энергообеспечение мышечной деятельности]]
*[[Работа мышц (энергетические процессы)]]
 
 
*[[Быстрые мышечные волокна]]
 
*[[Быстрые мышечные волокна]]
 
*[[Медленные мышечные волокна]]
 
*[[Медленные мышечные волокна]]
*[[Энергетические субстраты]]
+
 
*[[Обмен покоя]]
+
== Приобретение ==
*[[Основной обмен]]
+
 
 +
*[http://fitnessdom.ru/katalog_tovarov/katalog/silovye_trenazhery/ganteli_shtangi_diski/ Гантели, гири, штанги, диски в салонах-магазинах ФитнесДом]
 +
<br><br>
  
 
[[Категория:Тренинг]]
 
[[Категория:Тренинг]]

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблоны, используемые на этой странице: