Спорт-вики — википедия научного бодибилдинга

Редактирование: Энергетические субстраты

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 2: Строка 2:
 
== Энергетические субстраты ==
 
== Энергетические субстраты ==
  
[[Работа мышц (энергетические процессы)|Работа мышц]] требует постоянного поступления [[АТФ]] для поддержания цикла формирования поперечных связей. При этом миозин выступает в роли АТФазы и расщепляет АТФ на АДФ и неорганический фосфат (Ф). Мышцы имеют очень ограниченные резервы АТФ (этого запаса может хватить только на 4-6 с [[Физиология мышечного сокращения|сократительной активности]]), но могут регенерировать АТФ за очень короткое время за счет присоединения фосфатной группы к АДФ.
+
[[Работа мышц (энергетические процессы)|Работа мышц]] требует постоянного поступления [[АТФ]] для поддержания цикла формирования поперечных связей. При этом миозин выступает в роли АТФазы и расщепляет АТФ на АДФ и неорганический фосфат (Ф). Мышцы имеют очень ограниченные резервы АТФ (этого запаса может хватить только на 4-6 с сократительной активности), но могут регенерировать АТФ за очень короткое время за счет присоединения фосфатной группы к АДФ.
  
Процесс быстрой регенерации АТФ в мышцах происходит при переносе фосфатной группы с [[креатинфосфат]]а на АДФ с образованием АТФ и креатинина (такой способ [[Синтез АТФ|ресинтеза АТФ]] называют анаэробно-алактатным [[Энергообеспечение мышечной деятельности|энергообеспечением]]). Поскольку наличный запас креатинфосфата в [[Мышечная клетка|мышечной клетке]] невелик (его хватает на 6-10 с интенсивной работы), для более длительного функционирования мышц необходим синтез нового АТФ в ходе анаэробного [[гликолиз]]а (анаэробно-гликолитическое энергообеспечение), при котором 1 моль глюкозы расходуется на синтез 2 молей АТФ, либо в ходе [[Окислительное фосфорилирование|окислительного фосфорилирования]] в митохондриях (аэробное энергообеспечение), при котором за счет окисления 1 моля глюкозы синтезируется 34 моля АТФ. Наряду с глюкозой в качестве источника энергии мышцы могут использовать триглицериды в процессе [[Окисление жирных кислот|бета-окисления жирных кислот]].
+
Процесс быстрой регенерации АТФ в мышцах происходит при переносе фосфатной группы с креатин-фосфата на АДФ с образованием АТФ и креатинина (такой способ [[Синтез АТФ|ресинтеза АТФ]] называют анаэробно-алактатным [[Энергообеспечение мышечной деятельности|энергообеспечением]]). Поскольку наличный запас креатинфосфата в мышечной клетке невелик (его хватает на 6-10 с интенсивной работы), для более длительного функционирования мышц необходим синтез нового АТФ в ходе анаэробного [[гликолиз]]а (анаэробно-гликолитическое энергообеспечение), при котором 1 моль глюкозы расходуется на синтез 2 молей АТФ, либо в ходе [[Окислительное фосфорилирование|окислительного фосфорилирования]] в митохондриях (аэробное энергообеспечение), при котором за счет окисления 1 моля глюкозы синтезируется 34 моля АТФ. Наряду с глюкозой в качестве источника энергии мышцы могут использовать триглицериды в процессе (3-окисления жирных кислот.
  
 
=== Регенерация аденозинтрифосфата из креатинфосфата ===
 
=== Регенерация аденозинтрифосфата из креатинфосфата ===
  
Резервов креатинфосфата в мышцах достаточно для регенерации АТФ в течение не более 10 с. Продукт метаболизма [[креатин]]а — креатинин — затем выводится в кровь и попадает в мочу. Суточная продукция креатинина зависит от мышечной массы, поэтому уровень креатинина в плазме у мужчин выше, чем у женщин. Плазменный уровень креатинина также сильно зависит от общей тренированности. В норме у нетренированных лиц он составляет 0,5-1,2 мг/дл для мужчин и 0,5-1 мг/дл для женщин. Из организма креатинин выводится почками, повышение его концентрации в плазме крови может говорить о нарушении функции почек, однако значительное повышение уровня креатинина наблюдают только при тяжелой почечной патологии.
+
Резервов креатинфосфата в мышцах достаточно для регенерации АТФ в течение не более 10 с. Продукт метаболизма креатина — креатинин — затем выводится в кровь и попадает в мочу. Суточная продукция креатинина зависит от мышечной массы, поэтому уровень креатинина в плазме у мужчин выше, чем у женщин. Плазменный уровень креатинина также сильно зависит от общей тренированности. В норме у нетренированных лиц он составляет 0,5-1,2 мг/дл для мужчин и 0,5-1 мг/дл для женщин. Из организма креатинин выводится почками, повышение его концентрации в плазме крови может говорить о нарушении функции почек, однако значительное повышение уровня креатинина наблюдают только при тяжелой почечной патологии.
  
 
{{Wow}}'''Запомните''': [[АТФ]] — энергетический субстрат мышечной ткани. Резервов АТФ в мышцах хватает только на 5-6 с, за счет резервов креатинфосфата регенерация АТФ возможна еще 10-20 с (анаэробно-алактатное энергообеспечение). АТФ синтезируется в процессе гликолиза (анаэробно-гликолитическое энергообеспечение), а также окислительного фосфорилирования (аэробное энергообеспечение).
 
{{Wow}}'''Запомните''': [[АТФ]] — энергетический субстрат мышечной ткани. Резервов АТФ в мышцах хватает только на 5-6 с, за счет резервов креатинфосфата регенерация АТФ возможна еще 10-20 с (анаэробно-алактатное энергообеспечение). АТФ синтезируется в процессе гликолиза (анаэробно-гликолитическое энергообеспечение), а также окислительного фосфорилирования (аэробное энергообеспечение).
Строка 14: Строка 14:
 
=== Анаэробный синтез аденозинтрифосфата в процессе гликолиза ===
 
=== Анаэробный синтез аденозинтрифосфата в процессе гликолиза ===
  
При отсутствии или недостатке кислорода ([[Анаэробный обмен|анаэробные условия]]) мышца может регенерировать АТФ за счет процесса [[гликолиз]]а. Такие условия возникают, как правило, в начале циклической мышечной работы ([[врабатывание]]), а также в том случае, если величина физической нагрузки больше, чем скорость образования энергии за счет аэробного энергетического процесса. При этом из глюкозы в цитоплазме мышечной клетки образуется метаболит пируват, а конечным продуктом является [[молочная кислота]]. Мышцы получают глюкозу из крови или за счет распада мышечного [[гликоген]]а. Молекула глюкозы представляет собой 6-атомный спирт (т. е. каркас молекулы состоит из 6 атомов углерода). В процессе перегруппировки атомов и расщепления молекула глюкозы распадается на 2 молекулы пировиноградной кислоты (пирувата), каждая из которых содержит по 3 атома углерода. Пируват представляет собой один из типичных субстратов для работы митохондрий, но если он не успевает туда проникнуть или в клетке наблюдается нехватка кислорода, то в этом случае из пирувата в цитоплазме клетки образуется молочная кислота, легко распадающаяся на анион [[лактат]]а- и Н<sup>+</sup>. Выходящий в кровь по градиенту концентрации лактат обусловливает локальное закисление за счет повышения концентрации катионов водорода. В результате этих биохимических превращений из 1 моля глюкозы образуется 2 моля АТФ.
+
При отсутствии или недостатке кислорода (анаэробные условия) мышца может регенерировать АТФ за счет процесса гликолиза. Такие условия возникают, как правило, в начале циклической мышечной работы ([[врабатывание]]), а также в том случае, если величина физической нагрузки больше, чем скорость образования энергии за счет аэробного энергетического процесса. При этом из глюкозы в цитоплазме мышечной клетки образуется метаболит пируват, а конечным продуктом является [[молочная кислота]]. Мышцы получают глюкозу из крови или за счет распада мышечного [[гликоген]]а. Молекула глюкозы представляет собой 6-атомный спирт (т. е. каркас молекулы состоит из 6 атомов углерода). В процессе перегруппировки атомов и расщепления молекула глюкозы распадается на 2 молекулы пировиноградной кислоты (пирувата), каждая из которых содержит по 3 атома углерода. Пируват представляет собой один из типичных субстратов для работы митохондрий, но если он не успевает туда проникнуть или в клетке наблюдается нехватка кислорода, то в этом случае из пирувата в цитоплазме клетки образуется молочная кислота, легко распадающаяся на анион лактата- и Н+. Выходящий в кровь по градиенту концентрации лактат обусловливает локальное закисление за счет повышения концентрации катионов водорода. В результате этих биохимических превращений из 1 моля глюкозы образуется 2 моля АТФ.
  
 
Мышечные волокна способны накапливать глюкозу в виде гликогена. Гликоген представляет собой сильно разветвленную молекулу, что обеспечивает быстрый доступ расщепляющих ферментов к фрагментам молекулы гликогена и быстрое высвобождение запасов глюкозы. Однако для длительной мышечной активности (> 20 мин) мышцы должны получать АТФ в ходе окисления липидов, т. к. запасы мышечного гликогена истощаются. Именно по этой причине считается, что для профилактики и борьбы с ожирением нужны длительные циклические нагрузки аэробного характера.
 
Мышечные волокна способны накапливать глюкозу в виде гликогена. Гликоген представляет собой сильно разветвленную молекулу, что обеспечивает быстрый доступ расщепляющих ферментов к фрагментам молекулы гликогена и быстрое высвобождение запасов глюкозы. Однако для длительной мышечной активности (> 20 мин) мышцы должны получать АТФ в ходе окисления липидов, т. к. запасы мышечного гликогена истощаются. Именно по этой причине считается, что для профилактики и борьбы с ожирением нужны длительные циклические нагрузки аэробного характера.
Строка 22: Строка 22:
 
При наличии кислорода пируват подвергается окислительному фосфорилированию в цикле трикарбоновых кислот до С02 и Н20. При этой реакции возможно синтезировать больше АТФ, чем при гликолизе — из 1 моля глюкозы образуется 34 моля АТФ, — однако этот процесс более медленный: скорость образования АТФ в аэробном процессе почти в 2 раза ниже, чем в процессе анаэробного гликолиза.
 
При наличии кислорода пируват подвергается окислительному фосфорилированию в цикле трикарбоновых кислот до С02 и Н20. При этой реакции возможно синтезировать больше АТФ, чем при гликолизе — из 1 моля глюкозы образуется 34 моля АТФ, — однако этот процесс более медленный: скорость образования АТФ в аэробном процессе почти в 2 раза ниже, чем в процессе анаэробного гликолиза.
  
Важность наличия различных систем синтеза АТФ определяется различным временем регенерации АТФ (рис.). Так, на коротких дистанциях (60, 100 м) особую роль играет креатинфосфат, процессы анаэробного гликолиза достигают максимума через 30 с — 1 мин после начала нагрузки и сохраняют активность к концу средних дистанций (200, 400 м), а на длинных дистанциях наибольшее поступление АТФ обеспечивает окислительное фосфорилирование, которое достигает максимума через 1-3 мин. На время регенерации АТФ также оказывают влияние общая тренированность и питание.
+
Важность наличия различных систем синтеза АТФ определяется различным временем регенерации АТФ (рис.). Так, на коротких дистанциях (60,100 м) особую роль играет креатинфосфат, процессы анаэробного гликолиза достигают максимума через 30 с — 1 мин после начала нагрузки и сохраняют активность к концу средних дистанций (200, 400 м), а на длинных дистанциях наибольшее поступление АТФ обеспечивает окислительное фосфорилирование, которое достигает максимума через 1-3 мин. На время регенерации АТФ также оказывают влияние общая тренированность и питание.
  
 
=== Синтез аденозинтрифосфата в процессе β-окисления жирных кислот ===
 
=== Синтез аденозинтрифосфата в процессе β-окисления жирных кислот ===
Строка 47: Строка 47:
 
*[[Энергетический баланс]]
 
*[[Энергетический баланс]]
 
*[[Энергообеспечение мышечной деятельности]]
 
*[[Энергообеспечение мышечной деятельности]]
 +
*[[Энергетические субстраты]]
 
*[[Обмен покоя]]
 
*[[Обмен покоя]]
 
*[[Основной обмен]]
 
*[[Основной обмен]]
 
*[[Коэффициент полезного действия мышц]]
 
*[[Коэффициент полезного действия мышц]]

Пожалуйста, учтите, что любой ваш вклад в проект «SportWiki энциклопедия» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. SportWiki энциклопедия:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

В целях защиты вики от автоматического спама в правках просим вас решить следующую каптчу:

Отменить Справка по редактированию (в новом окне)


Упражнения

Шаблоны, используемые на этой странице: