Вверх

Спорт-вики — википедия научного бодибилдинга

Изменения

Перейти к: навигация, поиск

Алкилирующие средства

209 байт добавлено, 10 лет назад
Химические свойства
Рассмотрим взаимодействие алкилирующих средств с атомом N-7 гуанина на примере хлорметина (рис. 52.1). На первом этапе протекает реакция мономолекулярного нуклеофильного замещения (SN1) с высвобождением аниона хлора, образованием карбкатиона и замыканием одной из хлорэтильных групп в положительно заряженное этилениминовое кольцо — образуется высокоактивное промежуточное соединение (рис. 52.1, А). Третичный азот хлорметина становится нестабильным четвертичным, и промежуточное соединение быстро реагирует с нуклеофильными (электроотрицательными) участками различных молекул. Эти реакции идут по механизму бимолекулярного нуклеофильного замещения (SN2). Алкилирование азота гуанина (рис. 52.1, Б) имеет ряд важных последствий. Во-первых, гуанин находится в ДНК преимущественно в лактамной форме, что позволяет ему образовывать водородные связи с цитозином
комплементарной цепи. Однако при алкилировании гуанина атом N-7 становится четвертичным, получая положительный заряд, из-за чего гуанин приобретает свойства кислоты и переходит в лактимную форму. При репликации ДНК измененный гуанин образует пару уже не с цитозином, а с тимином, что ведет к замене пары гуанин—цитозин на пару аденин—тимин. Во-вторых, алкилирование дестабилизирует имидазольное кольцо гуанина, что приводит к раскрытию кольца и отщеплению гуанина. Все эти повреждения ДНК требуют репарации. В-третьих, хлорэтиламины (например, хлорметин) способны к циклизации второй хлорэтильной группы и алкилированию второго гуанина или другой нуклеофильной группы с образованием сшивки цепей ДНК или ДНК с белком, что резко нарушает функцию ДНК. Как цитотоксичность, так и мутагенность алкилирующих средств можно объяснить любым из перечисленных процессов, однако активность бифункциональных алкилирующих средств коррелирует именно с числом сшивок между цепями ДНК (Garcia et al., 1988). Механизм гибели поврежденных клеток до конца не ясен (см. ниже, «Механизм действия»).[[Image:Gm52_1.jpg|250px|thumb|right|Рисунок 52.1. Механизм действия алкилирующих средств. ]]
Все хлорэтиламины неустойчивы, хотя и в различной степени, поэтому при использовании каждого из этих препаратов надо учитывать его химические свойства. Так, хлорметин крайне нестабилен и почти полностью вступает в химические реакции уже через несколько минут после введения. Другие препараты, например хлорамбуцил, достаточно устойчивы для приема внутрь. Действие циклофосфамида проявляется только после его активации микросомальными ферментами печени.
Относительно устойчивые хлорэтиламины удалось получить путем соединения с замещенным бензольным кольцом. За счет смещения к нему электронной плотности от азота у этих веществ сильно снижена способность к образованию этилениминового кольца и карбкатионов, что позволяет им не сразу реагировать с макромолекулами крови и других тканей, а распределяться по всему организму. Среди ароматических хлорэтилами-нов основное значение имеют хлорамбуцил и мелфалан, эти препараты можно назначать внутрь.
Роль метаболической активации в действии алкилируюших средств хорошо видна на примере циклофосфамида, наиболее широко применяемого препарата из этой группы. При его разработке исходили из двух предположений. Во-первых, что замещение метильной группы хлорметина оксазафосфориновым кольцом снизит реактивность, так как хлорэтильные группы не смогут ионизироваться, пока не будет расщеплена фосфоамид-ная связь в этом кольце. Во-вторых, что в опухолях повышена активность фосфатаз и фосфамидаз, способных расщеплять оксазафосфориновое кольцо, обеспечивая таким образом избирательную активацию препарата в опухолевых клетках. Как и предполагалось, циклофосфамид обладает достаточной устойчивостью в водном растворе, а его алкилируюшая, цитотоксическая и мутагенная активность in vitro оказались слабыми. В то лее время при введении онкологическим больным и экспериментальным животным препарат проявлял выраженную противоопухолевую активность, а кроме того, обладал мутагенным и канцерогенным действием. Однако гипотеза об активации циклофосфамида фосфатазами и фосфамидазами оказалась неверной. В действительности он гидроксилируется микросомальными ферментами печени (рис. 52.3), и затем его активные метаболиты попадают в опухолевые клетки (см. ниже). Избирательное действие циклофосфамида на некоторые опухоли частично объясняется способностью нормальных тканей, например ткани печени, разрушать эти метаболиты с помощью альдегиддегидрогеназы и других ферментов. [[Image:Gm52_3.jpg|250px|thumb|right|Рисунок 52.3. Метаболизм циклофосфамида.]]
''Ифосфамид'', как и циклофосфамид, содержит оксазафосфо-риновое кольцо. Оба препарата содержат по две хлорэтильные группы, но у и фосфа мида одна из них связана с азотом оксаза-фосфоринового кольца, тогда как у циклофосфамида обе группы связаны с внециклическим азотом. Ифосфамид также активируется в печени путем гид роке ил ирован ия, однако его активация происходит медленнее. При этом значительная часть хлорэтильных групп окисляется до хлораиетальдегида. Очевидно, с этим связаны необходимость применения более высоких доз и фосфамида и некоторые различия в спектре противоопухолевой активности.
Производное триазена ''дакарбазин'' (5-(3,3-диметил-1-триазе-но)-имидазол-4-карбоксамид] вначале считался антиметаболитом, однако он действует как алкилирующее средство. Его структурная формула следующая: [[Image:Gm52_2.jpg|250px|thumb|right|Рисунок 52.2. Хлорэтиламины (азотистые иприты), применяемые в клинике.]]
Дакарбазин активируется микросомальными ферментами печени путем отщепления от атома азота одной из метильных групп. В опухолевых клетках от образовавшегося вещества спонтанно отделяется алкилирующий фрагмент — катион метилдиазония. Близкий по строению триазен темозоломид активируется спонтанно; этот препарат применяется при глиомах и меланоме (Agarwala and Kirkwood, 2000). Его структурная формула следующая:

Навигация