Спорт-вики — википедия научного бодибилдинга

Белково-углеводное окно — различия между версиями

Материал из SportWiki энциклопедии
Перейти к: навигация, поиск
Строка 53: Строка 53:
  
 
Even more so than with protein, carbohydrate dosage and timing relative to resistance training is a gray area lacking cohesive data to form concrete recommendations. It is tempting to recommend pre- and post-exercise carbohydrate doses that at least match or exceed the amounts of protein consumed in these meals. However, carbohydrate availability during and after exercise is of greater concern for endurance as opposed to strength or hypertrophy goals. Furthermore, the importance of co-ingesting post-exercise protein and carbohydrate has recently been challenged by studies examining the early recovery period, particularly when sufficient protein is provided. Koopman et al [52] found that after full-body resistance training, adding carbohydrate (0.15, or 0.6 g/kg/hr) to amply dosed casein hydrolysate (0.3 g/kg/hr) did not increase whole body protein balance during a 6-hour post-exercise recovery period compared to the protein-only treatment. Subsequently, Staples et al [53] reported that after lower-body resistance exercise (leg extensions), the increase in post-exercise muscle protein balance from ingesting 25 g whey isolate was not improved by an additional 50 g maltodextrin during a 3-hour recovery period. For the goal of maximizing rates of muscle gain, these findings support the broader objective of meeting total daily carbohydrate need instead of specifically timing its constituent doses. Collectively, these data indicate an increased potential for dietary flexibility while maintaining the pursuit of optimal timing.
 
Even more so than with protein, carbohydrate dosage and timing relative to resistance training is a gray area lacking cohesive data to form concrete recommendations. It is tempting to recommend pre- and post-exercise carbohydrate doses that at least match or exceed the amounts of protein consumed in these meals. However, carbohydrate availability during and after exercise is of greater concern for endurance as opposed to strength or hypertrophy goals. Furthermore, the importance of co-ingesting post-exercise protein and carbohydrate has recently been challenged by studies examining the early recovery period, particularly when sufficient protein is provided. Koopman et al [52] found that after full-body resistance training, adding carbohydrate (0.15, or 0.6 g/kg/hr) to amply dosed casein hydrolysate (0.3 g/kg/hr) did not increase whole body protein balance during a 6-hour post-exercise recovery period compared to the protein-only treatment. Subsequently, Staples et al [53] reported that after lower-body resistance exercise (leg extensions), the increase in post-exercise muscle protein balance from ingesting 25 g whey isolate was not improved by an additional 50 g maltodextrin during a 3-hour recovery period. For the goal of maximizing rates of muscle gain, these findings support the broader objective of meeting total daily carbohydrate need instead of specifically timing its constituent doses. Collectively, these data indicate an increased potential for dietary flexibility while maintaining the pursuit of optimal timing.
 +
 +
== Читайте также ==
 +
 +
*[[Белково-углеводное чередование]]
 +
*[[Белково-углеводный коктейль]]
 +
 +
== Источники ==
 +
 +
<references/>
 +
 +
[[Категория:Набор_массы]][[Категория:Питание_и_диеты]]

Версия 14:44, 29 августа 2013

Strela.png Исправить ошибку
Статья прошла проверку экспертом Спортвики

Белково-углеводное окно

Jissn.gif

Данная статья является адаптированным переводом научного обзора за 2013 год "Nutrient timing revisited: is there a post-exercise anabolic window" из Journal of the International Society of Sports Nutrition. Авторы Alan Albert Aragon и Brad Jon Schoenfeld.

Белково-углеводное окно - это метаболическое состояние, когда организм испытывает острую нужду в питательных веществах (преимущественно протеин[1] и углеводы), которые при употреблении в определенные моменты времени приводят к максимальному анаболическому отклику - росту мускулатуры,[2] и что не менее важно, это не приводит к образованию жировой массы.[3] В английском часто применяется термин "Nutrient timing", или стратегия приема пищи в околотренировочное время. Как правило до и после тренировки.

Многие авторы заявляют, что такой подход наиболее продуктивен для формирования красивого тела. Также постулируется, что питание в период белково-углеводного окна играет более важную роль, чем все остальная пища, употребленная за сутки.

Теоретически, потребление определенного соотношения белков и углеводов приводит к инициации восстановительных процессов в поврежденных во время физической тренировки мышечных волокнах, а также восполнению энергетических резервов, причем это происходит по принципу суперкомпенсации, ведущей к улучшению состава тела (соотношение жировой и сухой массы), а также повышению спортивных (силовых) показателей. Некоторые исследователи применяют термин “window of opportunity” (окно возможностей), который описывает ограниченный промежуток времени после тренинга, дающий возможность для быстрого восстановления и роста при правильном питании. Многие авторы подчеркивают, что значение и даже наличие белково-углеводного окна может существенно варьироваться в зависимости от ряда факторов.

Однако значимость и самое главное достоверность этих суждений до сих пор не проверялась. Более того, последние научные данные поставили под сомнение классические представления о белково-углеводном окне, а именно взаимосвязи приема питательных веществ после физической тренировки и анаболических процессов.

Alan Albert Aragon и Brad Jon Schoenfeld поставили перед собой следующие задачи:

  • Провести поиск литературных данных по данному вопросу
  • Сделать научно-обоснованные выводы, на основании которых построить рекомендации для получения максимального анаболического ответа при силовых тренировках.

Оригинальная статья находится по адресу: http://www.jissn.com/content/10/1/5

На Спортсвики размещен перевод важнейших тезисов и практическая информация. Большая часть литературных изысканий, рассмотрение многочисленных биохимических и физологических аспектов, была опущена за абсолютную практическую непригодность. Выложим список основных исследований, которые были оценены авторами обзора:

Carb-prot-window.jpg


Несмотря на заявления, что немедленный прием пищи после тренировки очень важен для максимальной гипертрофии мышц, их научная поддержка остается непрочной. Данная гипотеза основывается на предположении, что когда тренировка выполняется на голодный желудок происходит распад мышечного протеина поскольку развивается негативный аминокислотный баланс, который сохраняется и после тренинга, даже несмотря на то, что упражнения стимулируют синтез мышечных белков.[4]

Таким образом, если тренировка происходит сразу сна, возникает необходимость в экстренном обеспечении организма питательными веществами, а именно протеинам и углеводами. Это требуется для ускорения синтеза мышечных белков и подавления протеолиза, или другими словами - для переключения катаболических процессов на анаболические.

Возникает вопрос, как влияет прием пищи перед тренировкой на питание после тренировки, поскольку практически все атлеты стараются поесть за 1-2 часа перед физической нагрузкой. Tipton и соавторы[5] определили, что относительно небольшие дозы аминокислот (6 г) употребленные сразу перед выполнением упражнений способны существенно повышать концентрацию аминокислот в крови и мышцах примерно на 130%, которая сохраняется около 2 часов. Позднее исследования Fujita[6] и Tipton[7] показали, что прием 20 г сывороточного протеина перед началом тренинга повышают концентрацию аминокислот до 440%, которая сохраняется еще около 3 часов после тренировки. "Внимание" Таким образом, срочность в приеме белка и углеводов сразу после тренировки для подавления катаболизма существенно снижается, так как к этому моменту уровень аминокислот все еще достаточно высоким. Следующий прием пищи может быть отсрочен на 1-2 часа без вреда для роста и восстановления мышц.

С другой стороны, существует категория атлетов, которые тренируются перед ланчем или после работы. В этом случае последний прием пищи совершается за 4-6 часов до начала тренинга. И если нет возможности принять пищу или белково-углеводный напиток до тренировки, следует как можно скорее получить питательные вещества сразу после окончания тренировочной сессии. Layman[8] на основании постпрандиального уровня метаболизма аминокислот выявил, что анаболический эффект пищи продолжается примерно 5-6 часов. Однако дальнейшие исследования на крысах[9][10] и людях[11][12] показали, что анаболический эффект длиться меньше и составляет примерно 3 часа, не смотря на то, что высокий уровень аминокислот сохраняется дольше. Исходя из этого было предположено, что ускоренный синтез мышечного белка может приостанавливаться гораздо раньше, после чего свободные аминокислоты идут на другие нужды.

Опираясь на эти данные можно заключить, что когда тренировка выполняется более чем через 3-4 часа после предыдущего приема пищи, желательно принять протеин (как минимум 25 г) как можно скорее для предотвращения катаболических процессов. Однако, как уже было сказано выше, необходимость в питательных веществах перед тренировкой снижается, если после тренинга будет плотный прием белково-углеводной пищи.


An interesting area of speculation is the generalizability of these recommendations across training statuses and age groups. Burd et al. [82] reported that an acute bout of resistance training in untrained subjects stimulates both mitochondrial and myofibrillar protein synthesis, whereas in trained subjects, protein synthesis becomes more preferential toward the myofibrillar component. This suggests a less global response in advanced trainees that potentially warrants closer attention to protein timing and type (e.g., high-leucine sources such as dairy proteins) in order to optimize rates of muscular adaptation. In addition to training status, age can influence training adaptations. Elderly subjects exhibit what has been termed “anabolic resistance,” characterized by a lower receptivity to amino acids and resistance training [83]. The mechanisms underlying this phenomenon are not clear, but there is evidence that in younger adults, the acute anabolic response to protein feeding appears to plateau at a lower dose than in elderly subjects. Illustrating this point, Moore et al. [84] found that 20 g whole egg protein maximally stimulated post-exercise MPS, while 40 g increased leucine oxidation without any further increase in MPS in young men. In contrast, Yang et al. [85] found that elderly subjects displayed greater increases in MPS when consuming a post-exercise dose of 40 g whey protein compared to 20 g. These findings suggest that older subjects require higher individual protein doses for the purpose of optimizing the anabolic response to training. Further research is needed to better assess post-workout nutrient timing response across various populations, particularly with respect to trained/untrained and young/elderly subjects.

The body of research in this area has several limitations. First, while there is an abundance of acute data, controlled, long-term trials that systematically compare the effects of various post-exercise timing schemes are lacking. The majority of chronic studies have examined pre- and post-exercise supplementation simultaneously, as opposed to comparing the two treatments against each other. This prevents the possibility of isolating the effects of either treatment. That is, we cannot know whether pre- or post-exercise supplementation was the critical contributor to the outcomes (or lack thereof). Another important limitation is that the majority of chronic studies neglect to match total protein intake between the conditions compared. As such, it’s not possible to ascertain whether positive outcomes were influenced by timing relative to the training bout, or simply by a greater protein intake overall. Further, dosing strategies employed in the preponderance of chronic nutrient timing studies have been overly conservative, providing only 10–20 g protein near the exercise bout. More research is needed using protein doses known to maximize acute anabolic response, which has been shown to be approximately 20–40 g, depending on age [84,85]. There is also a lack of chronic studies examining the co-ingestion of protein and carbohydrate near training. Thus far, chronic studies have yielded equivocal results. On the whole, they have not corroborated the consistency of positive outcomes seen in acute studies examining post-exercise nutrition.

Another limitation is that the majority of studies on the topic have been carried out in untrained individuals. Muscular adaptations in those without resistance training experience tend to be robust, and do not necessarily reflect gains experienced in trained subjects. It therefore remains to be determined whether training status influences the hypertrophic response to post-exercise nutritional supplementation.

A final limitation of the available research is that current methods used to assess muscle hypertrophy are widely disparate, and the accuracy of the measures obtained are inexact [68]. As such, it is questionable whether these tools are sensitive enough to detect small differences in muscular hypertrophy. Although minor variances in muscle mass would be of little relevance to the general population, they could be very meaningful for elite athletes and bodybuilders. Thus, despite conflicting evidence, the potential benefits of post-exercise supplementation cannot be readily dismissed for those seeking to optimize a hypertrophic response. By the same token, widely varying feeding patterns among individuals challenge the common assumption that the post-exercise “anabolic window of opportunity” is universally narrow and urgent.


Practical applications

Distilling the data into firm, specific recommendations is difficult due to the inconsistency of findings and scarcity of systematic investigations seeking to optimize pre- and/or post-exercise protein dosage and timing. Practical nutrient timing applications for the goal of muscle hypertrophy inevitably must be tempered with field observations and experience in order to bridge gaps in the scientific literature. With that said, high-quality protein dosed at 0.4–0.5 g/kg of LBM at both pre- and post-exercise is a simple, relatively fail-safe general guideline that reflects the current evidence showing a maximal acute anabolic effect of 20–40 g [53,84,85]. For example, someone with 70 kg of LBM would consume roughly 28–35 g protein in both the pre- and post exercise meal. Exceeding this would be have minimal detriment if any, whereas significantly under-shooting or neglecting it altogether would not maximize the anabolic response.

Due to the transient anabolic impact of a protein-rich meal and its potential synergy with the trained state, pre- and post-exercise meals should not be separated by more than approximately 3–4 hours, given a typical resistance training bout lasting 45–90 minutes. If protein is delivered within particularly large mixed-meals (which are inherently more anticatabolic), a case can be made for lengthening the interval to 5–6 hours. This strategy covers the hypothetical timing benefits while allowing significant flexibility in the length of the feeding windows before and after training. Specific timing within this general framework would vary depending on individual preference and tolerance, as well as exercise duration. One of many possible examples involving a 60-minute resistance training bout could have up to 90-minute feeding windows on both sides of the bout, given central placement between the meals. In contrast, bouts exceeding typical duration would default to shorter feeding windows if the 3–4 hour pre- to post-exercise meal interval is maintained. Shifting the training session closer to the pre- or post-exercise meal should be dictated by personal preference, tolerance, and lifestyle/scheduling constraints.

Even more so than with protein, carbohydrate dosage and timing relative to resistance training is a gray area lacking cohesive data to form concrete recommendations. It is tempting to recommend pre- and post-exercise carbohydrate doses that at least match or exceed the amounts of protein consumed in these meals. However, carbohydrate availability during and after exercise is of greater concern for endurance as opposed to strength or hypertrophy goals. Furthermore, the importance of co-ingesting post-exercise protein and carbohydrate has recently been challenged by studies examining the early recovery period, particularly when sufficient protein is provided. Koopman et al [52] found that after full-body resistance training, adding carbohydrate (0.15, or 0.6 g/kg/hr) to amply dosed casein hydrolysate (0.3 g/kg/hr) did not increase whole body protein balance during a 6-hour post-exercise recovery period compared to the protein-only treatment. Subsequently, Staples et al [53] reported that after lower-body resistance exercise (leg extensions), the increase in post-exercise muscle protein balance from ingesting 25 g whey isolate was not improved by an additional 50 g maltodextrin during a 3-hour recovery period. For the goal of maximizing rates of muscle gain, these findings support the broader objective of meeting total daily carbohydrate need instead of specifically timing its constituent doses. Collectively, these data indicate an increased potential for dietary flexibility while maintaining the pursuit of optimal timing.

Читайте также

Источники

  1. Hulmi JJ, Lockwood CM, Stout JR: Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab (Lond). 2010, 7:51. BioMed Central Full Text OpenURL
  2. Ivy J, Portman R: Nutrient Timing: The Future of Sports Nutrition. North Bergen, NJ: Basic Health Publications; 2004. OpenURL
  3. Ivy J, Portman R: Nutrient Timing: The Future of Sports Nutrition. North Bergen, NJ: Basic Health Publications; 2004. OpenURL
  4. Kumar V, Atherton P, Smith K, Rennie MJ: Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol 2009, 106(6):2026-39
  5. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 2001, 281(2):E197-206.
  6. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB: Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol 2009, 106(5):1730-9.
  7. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR: Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 2007, 292(1):E71-6.
  8. Layman DK: Protein quantity and quality at levels above the RDA improves adult weight loss. J Am Coll Nutr 2004, 23(6 Suppl):631S-6S.
  9. Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ: The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr 2009, 139(6):1103-9.
  10. Wilson GJ, Layman DK, Moulton CJ, Norton LE, Anthony TG, Proud CG, Rupassara SI, Garlick PJ: Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats. Am J Physiol Endocrinol Metab 2011, 301(6):E1236-42.
  11. Bohe J, Low JF, Wolfe RR, Rennie MJ: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol 2001, 532(Pt 2):575-9.
  12. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ: Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 2010, 92(5):1080-8.