Адренергические рецепторы и синапсы
Источник:
Клиническая фармакология по Гудману и Гилману том 1.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.
ком. Как бы то ни было, непрямые симпатомиметики не вызывают выхода из окончания дофамин-0-монооксигеназы и могут действовать в бескальциевой среде — значит, их эффект не связан с экзоцитозом.
Существует также система экстранейронального захвата катехоламинов (захват 2-го типа), обладающая низким сродством к норадреналину, несколько более высоким — к адреналину и еше более высоким — к изопреналину. Эта система распространена повсеместно: она обнаружена в клетках глии, печени, миокарда и других. Экстранейрональный захват не блокируется имипрамином и кокаином. В условиях ненарушенного нейронального захвата его роль, видимо, невелика (Iversen, 1975; Trendelenburg, 1980). Возможно, он имеет большее значение для удаления катехоламинов крови, чем для инактивации катехоламинов, выделившихся нервными окончаниями.
Высвобождение. Последовательность событий, в результате которых под действием нервного импульса из адренергических окончаний выделяется адреналин, до конца не ясна. В мозговом веществе надпочечников пусковым фактором является действие выделяемого преганглионарными волокнами ацетилхолина на N-холинорецепторы хромаффинных клеток. При этом возникает локальная деполяризация, в клетку входит Са2\ и содержимое хромаффинных гранул (адреналин, АТФ, некоторые нейропептиды и их предшественники, хромогранины, дофамин-Р-монооксигеназа) выбрасывается путем экзо-нитоза. В адренергических окончаниях вход Са2+ по потенциалзависимым кальциевым каналам также играет ключевую роль в сопряжении деполяризации пресинаптической мембраны (потенциала действия) и высвобождения норадреналина. Блокада кальциевых каналов N-типа вызывает снижение АН — видимо, за счет подавления высвобождения норадреналина (Bowersox etal., 1992). В механизмах экзоцитоза, запускаемого кальцием, участвуют высококонсервативные белки, обеспечивающие прикрепление пузырьков к клеточной мембране и их дегрануляцию (Aunis, 1998). Повышение симпатического тонуса сопровождается увеличением концентрации в крови дофамин-β-монооксигеназы и хромогранинов. Это говорит о том, что экзоцитоз пузырьков участвует в высвобождении норадреналина при раздражении симпатических нервов.
Если синтез и обратный захват норадреналина не нарушены, то даже длительное раздражение симпатических нервов не приводит к истощению запасов этого медиатора. Если же потребности в выделении норадреналина возрастают, то вступают в действие регуляторные механизмы. направленные, в частности, на активацию тирозингидроксилазы и дофамин-β-монооксигеназы (см. выше).
Инактивация. Прекращение действия норадреналина и адреналина обусловлено: 1) обратным захватом нервными окончаниями, 2) диффузией из синаптической щели и экстра нейрональным захватом, 3) ферментативным расщеплением. Последнее обусловлено двумя основными ферментами — МАО и КОМТ (Axelrod, 1966; Kopin, 1972). Кроме того, катехоламины разрушаются сульфотрансферазами (Dooley, 1998). В то же время роль ферментативного расшепления в адренергическом синапсе гораздо меньше, чем в холинергическом, и на первое место в инактивации катехоламинов выступает обратный захват. Это видно, например, из того, что блокаторы обратного захвата катехоламинов (кокаин, имипрамин) значительно усиливают эффекты норадреналина, а ингибиторы МАО и КОМТ — лишь очень слабо. МАО играет роль в разрушении норадреналина, попавшего в аксоплазму. КОМТ (особенно в печени) имеет важнейшее значение для инактивации эндогенных и экзогенных катехоламинов крови.
МАО и КОМТ широко распространены в организме, в том числе в головном мозге. Наиболее высока их концентрация в печени и почках. В то же время в адренергических нейронах КОМТ почти отсутствует. Эти два фермента различаются и по внутриклеточной локализации: МАО преимущественно связана с наружной мембраной митохондрий (в том числе в адренергических окончаниях), а КОМТ находится в цитоплазме. От всех этих факторов зависит, по какому пути будут распадаться катехоламины в разных условиях, а также механизмы действия ряда препаратов. Выявлены 2 изофермента МАО (МАО А и МАО В), причем их соотношение в разных нейронах ЦНС и разных органах широко варьирует. Имеются избирательные ингибиторы этих двух изоферментов (гл. 19). Необратимые ингибиторы МАО А повышают биодоступность тирамина, содержащегося в ряде пищевых продуктов; поскольку тирамин усиливает высвобождение норадреналина из симпатических окончаний, при сочетании этих препаратов с тираминсодержащими продуктами возможен гипертонический криз. Избирательные ингибиторы МАО В (например, селегилин) и обратимые избирательные ингибиторы МАО А (например, моклобемид) реже вызывают это осложнение (Volz and Geiter, 1998; Wouters, 1998). Ингибиторы МАО применяют влечении болезни Паркинсона и депрессии (гл. 19 и 22).
Большая часть адреналина и норадреналина, поступающих в кровь — будь то из мозгового вещества надпочечников или адренергических окончаний, — метилируется КОМТ с образованием соответственно метанефрина и норметанефрина (рис. 6.5). Норадреналин, выходящий под действием некоторых препаратов (например, резерпина) из пузырьков в аксоплазму, вначале дезаминируется под действием МАО до 3,4-гидроксиминдально-го альдегида; последний восстанавливается альдегидредуктазой до 3,4-дигидроксифенилэтиленгликоля либо окисляется альдегиддегидрогеназой до 3,4-дигидроксиминдальной кислоты. Главный метаболит катехоламинов, выделяемый с мочой, — это З-метокси-4-гидроксиминдальная кислота, которую часто (хотя и неточно) называют ванилилминдальной кислотой. Соответствующий метаболит дофамина, не содержащий гидроксильной группы в боковой цепи, — это гомованилиновая кислота. Другие реакции метаболизма катехоламинов показаны на рис. 6.5. Измерение концентраций катехоламинов и их метаболитов в крови и моче — важный метод диагностики феохромоцитомы (опухоли, секретирующей катехоламины).
Ингибиторы МАО (например, паргилин и ниаламид) могут вызвать повышение концентрации норадреналина, дофамина и серотонина в головном мозге и других органах, проявляющееся разнообразными физиологическими эффектами. Подавление активности КОМТ не сопровождается какими-либо яркими реакциями. В то же время ингибитор КОМТ энтакапон оказался достаточно эффективным при болезни Паркинсона (Chong and Mersfelder, 2000; см. также гл. 22).
Содержание
Классификация адренорецепторов
Для того чтобы ориентироваться в удивительном многообразии эффектов катехоламинов и других адренергических веществ, необходимо хорошо знать классификацию и свойства адренорецепторов. Выяснение этих свойств и тех биохимических и физиологических процессов, на которые влияет активация разных адренорецепторов, помогло разобраться в разнообразных и порой, казалось бы, противоречивых реакциях разных органов на катехоламины. Все адренорецепторы по своей структуре близки между собой (см. ниже), но они сопряжены с разными системами вторых посредников, и поэтому их активация приводит к разным физиологическим последствиям (табл. 6.3 и 6.4).
Впервые предположение о существовании разных типов адренорецепторов было высказано Алквистом (Ahlquist, 1948). Этот автор основывался на различиях в физиологических реакциях на адреналин, норадреналин и другие близкие к ним вещества. Было известно, что эти агенты могут, в зависимости от дозы, органа и конкретного вещества, вызывать как сокращение, так и расслабление гладких мышц. Так, норадреналин оказывает на них мощный стимулирующий эффект, но слабый — тормозный, а изопреналин — наоборот; адреналин оказывает оба эффекта. В связи с этим Алквист предложил использовать обозначения а и β для рецепторов, активация которых приводит соответственно к сокращению и расслаблению гладких мышц. Исключение составляют гладкие мышцы ЖКТ — активация обоих типов рецепторов обычно вызывает их расслабление. Активность адреностимуляторов в отношении β-адренорецепторов убывает в ряду изопреналин > адреналин норадреналин, а в отношении а-адренорецепторов — в ряду адреналин > норадреналин » изопреналин (табл. 6.3). Эта классификация была подтверждена тем, что некоторые блокаторы (например, феноксибензамин) устраняют влияние симпатических нервов и адреностимуляторов только на а-адренорецепторы, а другие (например, пропранолол) — на β-адренорецепторы.
В дальнейшем β-адренорецепторы были подразделены на подтипы β1 (в частности, в миокарде) и β2 (в гладких мышцах и большинстве других клеток). Это было основано на том, что адреналин и норадреналин одинаково действуют на β1-адренорецепторы, но адреналин в 10— 50 раз сильнее действует на β2-адренорецепторы (Lands et al., 1967). Были разработаны избирательные блокаторы β1- и β2-адренорецепторов (гл. 10). В дальнейшем был выделен ген, кодирующий третий подтип β-адренорецепторов, — β3 (Emorine et al., 1989; Granneman et al., 1993). Поскольку β3-адренорецепторы примерно в 10 раз чувствительнее к норадреналину, чем к адреналину, и сравнительно устойчивы к действию блокаторов типа пропранолола, именно они могут отвечать за атипичные реакции некоторых органов и тканей на катехоламины. К таким тканям относится, в частности, жировая. В то же время роль β3-адренорецепторов в регуляции липолиза у человека пока не ясна (Rosenbaum et al., 1993; Kriefctal., 1993; Lonnqvist et al., 1993). Существует гипотеза, что с полиморфизмом гена данного рецептора может быть связана предрасположенность к ожирению или инсулинонезависимому сахарному диабету у некоторых групп населения (Агпег and HofTstedt, 1999). Интерес представляет возможность использования избирательных β3-адреноблокаторов в лечении этих заболеваний (Weyeretal., 1999).
Рисунок 6.5. Метаболизм катехоламинов. В инактивации катехоламинов участвуют и МАО, и КОМТ, но очередность их действия может бьггь различной. В первом случае метаболизм катехоламинов начинается с окислительного дезаминирования под действием МАО; адреналин и норадреналин при этом сначала превращаются в 3,4-гидроксиминдальный альдегид, который затем либо восстанавливается до 3,4-дигидроксифенилэтиленгликоля, либо окисляется до 3,4-дигидроксиминдальной кислоты. Первой реакцией второго пути служит их метилирование КОМТ до метанефрина и норметанефрина соответственно. Затем действует второй фермент (в первом случае — КОМТ, во втором — МАО), и образуются основные метаболиты, выделяющиеся с мочой, — 3-меток-си-4-гидроксифенилэтиленгликоль и З-метокси-4-гидроксиминдальная (ванилилминдальная) кислота. Свободный 3-меток-си-4-гидроксифенилэтиленгликоль в значительной степени превращается в ванилилминдальную кислоту. 3,4-дигидроксифенил-этиленгликоль и, в известной степени, О-метилированные амины и катехоламины могут конъюгироваться с сульфатами или глюкуронидами. Axelrod, 1966, и др.
Альфа-адренорецепторы также подразделяются на подтипы. Первым основанием для такого подразделения послужили данные о том, что норадреналин и другие а-адреностимуляторы могут резко подавлять высвобождение норадреналина из нейронов (Starke, 1987; см. также рис. 6.4). Напротив, некоторые а-адреноблокаторы приводят к значительному повышению количества норадреналина, выделяемого при раздражении симпатических нервов. Оказалась, что этот механизм подавления высвобождения норадреналина по принципу отрицательной обратной связи опосредован а-адренорецепторами, по своим фармакологическим свойствам отличающимися oт расположенных на эффекторных органах. Эти пресинаптические адренорецепторы были названы а2, а классические постсинаптические адренорецепторы — a, (Langer,1997). Клонидин и некоторые другие адреностимуляторы сильнее действуют на а2-адренорецепторы, а, например, фенилэфрин и метоксамин — на а1-адренорецепторы. Данных о наличии в нейронах вегетативной нервной системы пресинаптических а1-адренорецепторов мало. В то же время а2-адренорецепторы были обнаружены во многих тканях и на постсинаптических структурах, и даже вне синапсов. Так, активация постсинаптических а2-адренорецепторов в головном мозге приводит к снижению симпатического тонуса и, видимо, в значительной степени обусловливает гипотензивное действие клонидина и подобных ему препаратов (гл. 10). В связи с этим представления об исключительно пресинаптических а2-адренорецепторах и постсинаптических а1-адренорецепторах надо считать устаревшими (табл. 6.3).
Таблица 6.4. Системы вторых посредников, сопряженные с адренорецепторами
Методами молекулярного клонирования были выявлены еще несколько подгрупп в пределах обоих подтипов а-адренорецепторов (Bylund, 1992). Обнаружены три подгруппы а,-адренорецепторов (а1А, а1B и а1D; табл. 6.5), различающиеся про фармакологическим свойствам, структуре и распределению в организме. В то же время их функциональные особенности почти не изучены. Среди a2-адренорецепторов также были выделены 3 подгруппы а2В и а2С; табл. 6.5), различающиеся по распределению в головном мозге. Возможно, по крайней мере а2А-адренорецепторы могут играть роль пресинаптических ауторецепторов (Aantaa et al., 1995; Lakhlani et al., 1997).
Молекулярные основы функционирования адренорецепторов
Видимо, реакции на активацию всех типов адренорецепторов опосредованы G-белками, вызывающими образование вторых посредников или изменение проницаемостей ионных каналов. Как уже обсуждалось в гл. 2,подобные системы включают 3 основных белковых компонента — рецептор, G-белок и эффекторный фермент либо канал. Биохимические последствия активации адренорецепторов во многом такие же, как М-холинорецепторов (см. выше и табл. 6.4).
Структура адренорецепторов
Адренорецепторы представляют собой семейство родственных белков. Кроме того, они структурно и функционально сходны с большим числом других рецепторов, сопряженных с G-белками (Lefkowitz, 2000), — от М-холинорецепторов до фоторецепторного белка родопсина (гл. 2). Исследование связывания лигандов, использование специфических меток и направленного мутагенеза показало, что для сродства рецепторов к лигандам ключевое значение имеют консервативные трансмембранные домены (Strader etal., 1994; Hutchins, 1994). Видимо, они создают своего рода карман для лиганда — подобно тому, который образуется трансмембранными доменами родопсина для ковалентно связанного с ним ретиналя. В разных моделях катехоламины располагаются в этом кармане либо параллельно (Strader et al., 1994), либо перпендикулярно (Hutchins,1994) к поверхности мембраны. Расшифровка кристаллической структуры родопсина позволила подтвердить ряд гипотез относительно структуры рецепторов, сопряженных с G-белками (Palczewski et al., 2000).
Бета-адренорецепторы
Аминокислотная последовательность трансмембранных доменов (образующих предполагаемый карман для адреналина и норадреналина) всех трех подтипов β-адренорецепторов оказалась на 60% сходной. Методом направленного мутагенеза в β2-адренорецепторе выявлены аминокислоты, взаимодействующие с отдельными функциональными группировками молекул катехоламинов.
Активация всех β-адренорецепторов приводит к повышению активности аденилатциклазы через белок Gs (гл. 2; Taussig and Gilman, 1995). При этом накапливается цАМФ, активируется протеинкиназа А, фосфорилируются и активируются многочисленные клеточные белки (см. ниже). Кроме того, белок Gs непосредственно действует на медленные кальциевые каналы поверхностной мембраны клеток сердца и скелетных мышц, повышая вероятность их открывания. Это создает дополнительную возможность для регуляции функции этих органов.
Таблица 6.5. Подгруппы адренорецепторов
Протеинкиназа А (цАМФ-зависимая протеинкиназа) обычно считается основной мишенью цАМФ. В неактивном виде она представляет собой тетрамер из двух регуляторных (R) и двух каталитических (С) субъединиц — Связывание с ней цАМФ приводит к снижению сродства регуляторных субъединиц к каталитическим в 10 000—100 000 раз, отсоединению регуляторных субъединиц и активации каталитических субъединиц (Francis and Corbin, 1994; Smith et al., 1999). Активная протеинкиназа А фосфорилирует различные клеточные белки, что и приводит к характерным для активации β-адренорецепторов эффектам. После прекращения действия протеинкиназы А белки дефосфорилируются фосфопротеидфосфатазами. Специфичность реакций, катализируемых протеинкиназой А, обусловлена тем, что она связана с определенными участками клеточных мембран. Эта связь, в свою очередь, опосредована так называемыми якорными белками протеинкиназы A (Edwards and Scott, 2000).
Типичным и широко известным примером этой последовательности реакций служит активация печеночной фосфорилазы. Этот фермент катализирует лимитирующую реакцию гликогенолиза — превращение глюкозы в глюкозо-1-фосфат. Его активация происходит следующим образом: протеинкиназа А фосфорилирует киназу фосфорилазы, а та, в свою очередь, фосфорилирует и тем самым активирует фосфорилазу. Благодаря такому каскаду реакций фосфорилирования происходит значительное усиление сигнала: достаточно активации лишь нескольких β-адренорецепторов, чтобы через короткое время образовалось большое количество активных молекул фосфорилазы.
Одновременно с активацией печеночной фосфорилазы протеинкиназа А фосфорилирует и тем самым инактивирует другой фермент — гликогенсинтетазу. Этот фермент катализирует перенос глюкозных остатков с УДФ-глюкозы на гликоген, и его инактивация сопровождается торможением образования последнего. Таким образом, цАМФ не только усиливает образование глюкозы из гликогена, но и подавляет его синтез; и то, и другое приводит к мобилизации глюкозы из печени.
Сходные реакции приводят к активации гормон-чувствительной липазы (триглицеридлипазы) и мобилизации свободных жирных кислот из жировой ткани. Эта липаза фосфорилируется и тем самым активируется протеинкиназой А. Так катехоламины приводят к высвобождению дополнительных субстратов для окислительного метаболизма.
В сердце активация β-адренорецепторов оказывает положительный инотропный и хронотропный эффекты. При стимуляции этих рецепторов в кардиомиоцитах возрастает концентрация цАМФ и усиливается фосфорилирование таких белков, как тропонин и фосфоламбан. Это может влиять как на внутриклеточные потоки Са3+, так и на эффекты этого иона. Кроме того, белок Gs может непосредственно действовать на медленные кальциевые каналы, повышая вероятность их открывания.
Альфа-адренорецепторы
Аминокислотная последовательность всех 6 подгрупп а-адренорецепторов была установлена на основании структуры трех генов а1 -адренорецепторов (а1А, а1В и а1D; Zhong and Miimeman, 1999) и трех генов а2-адренорецепторов (aM, a2B и a2C; Bylund,1992). Оказалось, что эта последовательность вполне соответствует распространенной схеме рецепторов с семью трансмембранными доменами, сопряженных с G-белками. Хотя a-адренорецепторы изучены и не так хорошо, как β-адренорецепторы, их структура и ее связь со сродством к лиганду и активацией G-белков в целом такие же, как для β-адренорецепторов (см. выше) и других рецепторов, сопряженных с G-белками (гл. 2). Аминокислотная последовательность трансмембранных доменов всех трех подгрупп а,-адренорецепторов и всех трех подгрупп а2-адренорецепторов оказалась на 75% сходной.
В то же время между собой ar и а2-адренорецепторы не более сходны, чем а- и β-адренорецепторы (на 30 и 40% соответственно).
Альфа2-адренорецепторы. Как видно из табл. 6.4, а2-адреноре-цепторы могут быть сопряжены с разнообразными эффекторами (Aantaa etal., 1995; Bylund, 1992). Первым из обнаруженных эффектов активации этих рецепторов было торможение аденилатциклазы. Однако в некоторых случаях наблюдается, напротив, повышение активности этого фермента, опосредованное либо Ру-субъединицами белка G,, либо слабой прямой стимуляцией белка Gs. Физиологическая роль увеличения активности аденилатциклазы не ясна. Активация а2-адренорецепторов приводит к открыванию зависимых от G-белков калиевых каналов и, как следствие, к гиперполяризации. Активация а2-адреноре-цепторов может также сопровождаться снижением вероятности открывания медленных кальциевых каналов; этот механизм опосредован белками G0. К другим эффектам активации этих рецепторов относится ускорение Ыа+/Н+-обмена, повышение активности фосфолипазы Ср2 и образование арахидоновой кислоты, повышение гидролиза фосфоинозитилов, возрастание внутриклеточной концентрации Са. Последним механизмом обусловлено сокращение гладких мышц под действием а2-адреностимуляторов. Кроме того, показано, что активация а2-ад-ренорецепторов может приводить к стимулированию митоген-активируемых протеинкиназ — видимо, путем высвобождения комплекса Ру из G-белков, чувствительных к коклюшному токсину (Della Rocca et al., 1997; Richman and Regan, 1998). Этот и сходные механизмы вызывают активацию тирозинкиназ и всю последующую цепь событий (подобно рецепторам пептидов, сопряженным с тирозинкиназами). Итак, а2-адренорецепторы могут запускать несколько систем внутриклеточной передачи сигнала, однако роль каждой из них в последствиях активации этих рецепторов пока не ясна. Важнейшую роль в торможении высвобождения норадреналина из симпатических окончаний и в уменьшении центральной симпатической посылки (приводящем к снижению АД) играют a2A-адренореиепторы (MacMillan et al., 1996; Docheity, 1998; Kable et al., 2000). Кроме того, эти рецепторы частично опосредуют седативный эффект избирательных а2-адреностимуляторов и их способность снижать необходимую дозу ингаляционных анестетиков (Lakhlani etal., 1997).
Альфа1-адренорецепторы. Эти рецепторы также сопряжены с разнообразными механизмами внутриклеточной передачи сигнала. Важнейший из них — это выход Са2* из эндоплазматического ретикулума в цитоплазму. Видимо, это обусловлено активацией фосфолипазы Сβ белком Gq. В свою очередь, фосфолипаза Сβ вызывает гидролиз мембранных фосфоинозитидов с образованием двух вторых посредников — ДАГ и ИФ3. Последний, действуя на соответствующий рецептор, вызывает выход Са из эндоплазматического ретикулума; ДАГ же является мощным активатором протеинкиназы С (Berridge, 1993), которая вдобавок активируется кальцием. Изменение активности протеинкиназ — не только протеинкиназы С, но и, например, ряда Са2+-кальмодулинзависимых протеинкиназ (Dempsey et al., 2000; Braun and Schulmanm, 199S) — это важный компонент реакции на активацию а1-адренорецепторов. Так, у некоторых видов животных а1-адренорецепторы стимулируют мобилизацию глюкозы из печени; это осуществляется, во-первых, за счет активации высвобождающимся кальцием киназы фосфорилазы, во-вторых — за счет фосфорилирования протеинкиназой С и, как следствие, инактивации гликогенсинтетазы. Вообще протеинкиназа С фосфорилирует многие субстраты, в том числе мембранные белки, образующие ионные каналы, насосы и обменники (например, Са2+-АТФазу). Возможно, эти механизмы участвуют в регуляции ионных проницаемостей.
Стимуляция а1-адренорецепторов приводит также к активации фосфолипазы А2 и образованию арахидоновой кислоты. Ее метаболизм по циклооксигеназному и липоксигеназному пути сопровождается образованием соответственно простагландинов и лейкотриенов (гл. 26). Альфа1-адреностимуляторы (в том числе адреналин) вызывают повышение активности фосфолипазы А2 во многих тканях и культурах клеток, что свидетельствует о важности данного пути. Под действием фосфолипазы D из лецитина (фосфатидилхолина) образуется фосфатидная кислота. Последняя сама по себе может играть роль второго посредника, вызывая выход кальция из эндоплазматического ретикулума, но кроме того, она превращается в ДАГ. Недавно было показано, что фосфолипаза D служит точкой приложения АДФ-рибозилирующего фактора (ARF) — значит, она может играть роль в регуляции внутриклеточного переноса макромолекул. Наконец, есть данные о том, что в гладких мышцах активация а-адренорецепторов влияет на медленные кальциевые каналы через G-белки.
В большинстве гладких мышц повышение внутриклеточной концентрации Са + вызывает сокращение вследствие активации кальцийзависимых протеинкиназ, например Са2+-кальмодулинзависимой киназы легких цепей миозина (в гладкой мышце сокращение запускается именно фосфорилированием этих цепей; Stull et al., 1990). С другой стороны, в гладких мышцах ЖКТ увеличение внутриклеточной концентрации Са3* при активации а1-адренорецепторов приводит, наоборот, к расслаблению — в результате открывания Са2+-зависимых калиевых каналов и гиперполяризации (McDonald et al., 1994).
Как и в случае а2-адренорецепторов, есть достаточно оснований полагать, что стимуляция а1-адренорецепторов приводит к активации митоген-активируемых и других протеинкиназ (например, фосфатидилинозитол-3-киназа), регулирующих рост и пролиферацию клеток (Dorn and Brown, 1999; Gutkind, 1998). Так, длительная стимуляция этих рецепторов усиливает рост кардиомиоцитов и гладких мышц сосудов.
Локализация адренорецепторов
Пресинаптические а2- и β2-адренорецепторы играют важную роль в регуляции высвобождения норадреналина из симпатических окончаний. Кроме того, пресинаптические а2-адренорецепторы могут подавлять выделение и других медиаторов из центральных и периферических нейронов. Постсинаптические а2- и β2-адренорецепторы найдены на многих типах нейронов в головном мозге. На периферии постсинаптические а2-адренорецепторы обнаружены на гладких мышцах сосудов и других органов (активация этих рецепторов приводит к сокращению гладких мышц), липоцитах и секреторных эпителиальных клетках (в кишечнике, почках и эндокринных железах). Постсинаптические β2-адренорецепторы имеются в рабочем миокарде (их активация сопровождается положительным инотропным эффектом), на гладких мышцах сосудов и других органов (активация сопровождается расслаблением). Как а2-, так и β2-адренорецепторы нередко располагаются в участках, отдаленных от адренергических окончаний. Чаще всего такие внесинаптические рецепторы встречаются на гладких мышцах сосудов и форменных элементах крови (тромбоцитах и лейкоцитах); они могут активироваться преимущественно катехоламинами крови (адреналином).
Постсинаптические а1- и β1-адренорецепторы, напротив, в периферических органах обычно располагаются непосредственно в области адренергических окончаний и поэтому активируются главным образом выделяющимся из этих окончаний медиатором. Их много также в головном мозге у млекопитающих.
Распределение отдельных подгрупп а1- и а2-адренорецепторов (см. выше) до конца не изучено. Методом флюоресцентной гибридизации in situ для выявлениям РНК рецепторов и с помощью антител, специфичных к отдельным подгруппам рецепторов, было показано, что а2А-адренорецепторы в головном мозге могут быть как пресинаптическими, так и постсинаптическими. Эти и другие данные позволяют предположить, что рецепторы данной подгруппы играют роль пресинаптических ауторецепторов в центральных адренергических нейронах (Aantaa et al., 199S; Lakhlani et al., 1997). Аналогичными методами было обнаружено, что в гладких мышцах предстательной железы преобладают а1А-адренорецепторы (Walden et al., 1997).
Десенситизация
Длительное действие на ткань катехоламинов сопровождается постепенным снижением реакции на них. Это явление, называемое привыканием, рефрактерностью, тахифилаксией и десенситизацией, существенно ограничивает время действия и эффективность катехоламинов и подобных им веществ (гл. 2). Десенситизация широко известна, но механизмы ее до конца не ясны. Подробнее всего они изучены на примере β-адренорецепторов, активация которых приводит к образованию цАМФ.
Есть данные о том, что величина реакции ткани на катехоламины регулируется на разных уровнях, включая рецепторы, G-белки, аденилатциклазу и фосфодиэстеразу. Таким образом, десенситизация может быть обусловлена разными механизмами; соответственно, и проявляться она может по-разному. Иногда (особенно при изменениях на уровне рецепторов) она касается только β-адреностимуляторов. Это так называемая гомологичная десенситизация. В других же случаях в ответ на действие β-адреностимулятора снижается реакция на многие вещества, усиливающие сопряженный с рецепторами синтез цАМФ. Такая десенситизация называется гетерологичной; она также может быть обусловлена изменениями на уровне рецепторов, но может затрагивать и другие этапы каскада внутриклеточной сигнализации.
Один из важнейших механизмов быстрой регуляции функции β-адренорецепторов — это фосфорилирование данных рецепторов при их стимуляции лигандом. В результате чувствительность рецепторов к катехоламинам снижается. Это фосфорилирование может быть обусловлено разными протеинкиназами, но последствия его одинаковые — разобщается связь рецептора с Gs-белком и, как следствие, уменьшается активация аденилатциклазы.
Гетерологичная десенситизация
Одна из протеинкиназ, фосфорилирующих сопряженные с G-белками рецепторы, — это протеинкиназа А. Как уже говорилось, она активируется цАМФ, образующимся под действием аденилатциклазы; последняя, в свою очередь, активируется при стимуляции β-адренорецепторов. Таким образом, протеинкиназа А обеспечивает отрицательную обратную связь: в ответ на стимуляцию β-адренорецепторы фосфорилируются и десенситизируются (Hausdorff et al., 1990). Показано, что фосфорилирование β2-адренорецепторов происходит в области дистального участка третьей внутриклеточной петли и проксимального участка внутриклеточного (С-концевого) домена (рис. 6.6). Гетерологичная десенситизация обусловлена фосфорилированием участка третьей внутриклеточной петли (Clark et al., 1989). Видимо, при этом изменяется конформация рецептора и, как следствие, нарушается его связь с белком Gs.
Гомологичная десенситизация
Особая протеинкиназа — киназа β-адренорецепторов — фосфорилирует только эти рецепторы и только тогда, когда с ними связан стимулятор (Benovic et al., 1986). Оказалось, что она относится к семейству, включающему по меньшей мере шесть киназ рецепторов, сопряженных с G-белками. Эти киназы, образующие семейство GRK (G-protein-coupled receptor kinases), фосфорилируют и тем самым регулируют функцию многочисленных рецепторов данного семейства. Поскольку киназы семейства GRK действуют только на активированные рецепторы, связанные со стимуляторами, они обеспечивают гомологичную — специфичную по отношению к лиганду — десенситизацию. Строение всех киназ семейства GRK сходно (Krupnick and Benovic, 1998; Pitcher et al.,1998). Примером таких киназ может быть киназа GRK1, называемая раньше родопсинкиназой. Этот фермент регулирует функцию фоторецепторного белка родопсина. Киназа GRK1 обнаруживается преимущественно в палочках и колбочках, а, например, киназа GRK2 — в самых разных клетках. На настоящий лень киназа GRKI — это единственная киназа данного семейства, для которой установлен субстрат (родопсин); для остальных киназ семейства GRK четкой связи с теми или иными рецепторами не выявлено. Активированные стимуляторами β-адреноренепторы взаимодействуют с белком Gs, вызывая его распад на субъединицу а, и комплекс Ру (гл. 2). Последний остается фиксированным на клеточной мембране посредством липидного (геранил-геранилового) остатка и при этом, видимо, способствует связыванию с мембраной киназы β-адренорецепторов (киназой GRK I) или стабилизирует эту связь. Тем самым и обеспечивается фосфорилирование соединенного со стимулятором и активированного β-адренорецептора, которое происходит в области множественных сериновых остатков рядом с С-концевым фрагментом (рис. 6.6).
Домен, связывающий комплекс Ру, имеется также у киназы GRK3. Киназы GRK4 и GRK6 содержат остаток пальмитиновой кислоты, а киназа GRK5 — два основных фосфолипидсвязываюших домена (Krupnick and Benovic, 1998). Киназы семейства GRK фосфорилируют и множество других рецепторов, сопряженных с G-белками (в том числе а1А- и а2А-адренорецепторы, рецепторы тромбина, ангиотензиновые рецепторы), и некоторые другие белки. Ингибиторы киназ семейства GRK могут уменьшать выраженность десенситизации, а избыточная экспрессия киназ семейства GRK в кардиомиоцитах снижает их реакцию на β-адреностимуляторы (Koch et al., 1995). Интересно, что снижение этой реакции часто бывает при сердечной недостаточности, и есть данные, что у таких больных увеличена экспрессия киназ семейства GRK в миокарде (Lingerer et al.1993).
Рисунок 6.6. Участки фосфорилирования р2-адренорецептора. С внеклеточной стороны показаны предполагаемые дисуль-фидные мостики между двумя внеклеточными петлями и — в области внеклеточного (N-концевого) домена — два характерных участка гликозилирования аспарагиновой кислоты (ЧР). С цитоплазматической стороны изображены участки фосфорилирования протеинкиназой А и киназой Р-адренорецепторов. Фосфорилирование внутриклеточного (С-концевого) домена киназой p-адренорецепторов приводит к соединению с рецептором p-аррестина и нарушению связи рецептора с белком G,. Этот механизм лежит в основе гомологичной десенситизации, тогда как фосфорилирование протеинкиназой А приводит к гетерологичной десенситизации (см. текст). Зигзагообразной фигурой изображена пальмитоиловая группа, ковалентно связанная в р2-адренорецепторе с Цис341. КБА — киназа Р-адреноре-цепторов, ПКА — протеинкиназа A. Collins et al., 1992.
Если фосфорилирование сопряженного с G-белком рецептора протеинкиназой А непосредственно приводит к десенситизации, то самого по себе фосфорилирования киназами семейства GRK, очевидно, недостаточно. Полагают, что должна происходить еще одна реакция, при которой некий белок соединяется с фосфорилированным рецептором и путем аллосте-рической модификации блокирует его взаимодействие с G-бел-ком. На самом деле речь идет о целом семействе белков, действующих сходным образом во многих рецепторах (Krupnick and Benovic, 1998; Lefkowitz, 1998). В случае рецепторов, сопряженных с G-белками, этот белок называется p-аррестином (от англ. arrest — задерживать, останавливать), а в случае фоторецепторных клеток — просто аррестином. Фосфорилирование рецептора резко ускоряет его связывание с аррестинами. Это связывание играет важнейшую роль в регулировании клеточных реакций на активацию рецепторов.
Кроме того, действие на рецепторы стимуляторов вызывает быструю (в течение нескольких минут) обратимую интернализацию рецепторов и более медленное (в течение часов) снижение их количества. Значение интернализации не совсем ясно. Есть данные, что она играет роль в некоторых (Daaka et al.,1998), но не во всех случаях стимуляции митоген-активируемых протеинкиназ в ответ на активацию рецепторов, сопряженных с G-белками (Schramm and Limbird, 1999; Pierce et al., 2000). С количественной точки зрения значение интернализации для десенситизации может быть невелико, в частности потому, что во многих клетках на этапах между активацией β-адренорецептора и конечными реакциями эффекторных белков происходит значительное усиление сигнала. Тем не менее есть данные, что при интернализации может происходить дефосфорилирование рецепторов и восстановление их чувствительности к стимуляторам. Снижение количества рецепторов обусловливает длительную десенситизацию. Не вызывает сомнения, что оно опосредовано несколькими механизмами, в том числе изменением скорости оборота рецепторов, транскрипции их генов и стабильности их мРНК. Процессы эти сложны и до конца не изучены (Collins et al., 1992).
Есть данные об интернализации и о снижении количества а2-адренорецепторов, хотя у разных их подгрупп эти процессы сильно различаются (Saunders and Limbird, 1999; Heck and Bylund, 1998). Кроме того, в ряде работ обнаружены интернализация и фосфорилирование после активации стимулятором и а-адренорецепторов (Wang et al., 1997; Diviani et al., 1997; Garcia-Sainz et al., 2000).