== L-карнитин и его производные в спортивной медицине ==
'''Авторы''': д.м.н. [[Александр Дмитриев]], врач-эндокринолог [[Участник:Алексей_Калинчев|Алексей Калинчев]]
== Введение ==
[[Image:Karnitin_Ris_6.jpg|250px|thumb|right|Рис.6. Фармакодинамика L-карнитина в организме. Из Л.А.Балыкова и соавт. (2011).]]
Метаболизм L-карнитина исследован достаточно подробно (рис.6). Традиционно важная роль отводится бета-окислению жирных кислот с последующим увеличением доступности АТФ для выполнения механической работы (Е.М.Gorostiaga и соавт., 1989). Процесс бета-окисления состоит в последовательном укорочении цепочек жирных кислот с продукцией ацетил-CoA. Поскольку активированные длинноцепочечные жирные кислоты не способны проникать через внутреннюю митохондриальную мембрану, процесс укорочения их цепи обязательно предшествует их карнитин-зависимому транспорту в митохондриальное трансмембранное пространство. Процесс начинается с образования ацил-коэнзима А (acyl-CoA) с помощью ацил-коэнзим А-синтетазы (LCAS), которая локализуется в наружной митохондриальной мембране. Далее в процесс включаются потенциал-зависимые анионные каналы, через которые осуществляется активное движение жирных кислот. На этом этапе жирные кислоты подвергаются воздействию ацил-карнитина с ферментом CPT-I, который также находится на наружной митохондриальной мембране. Продукты этой реакции – эфиры карнитина, - транспортируются в митохондриальную матрицу посредством ряда биохимических реакций. Внутри матрицы эфиры ацил-карнитина трансформируются в соответствующие эфиры коэнзима А. Бета-окислительный процесс жирных кислот с очень длинной цепью происходит главным образом в пероксисомах, в то время как длинноцепочечные жирные кислоты окисляются и в пероксисомах и в митохондриях. Продукты окисления (включая промежуточные) окончательно метаболизируют до СО2 и воды. ''Пищевые добавки L-карнитина усиливают окисление жирных кислот в мышцах с получением АТФ, что может отсрочить использование гликогена мышечных клеток и, тем самым, отдалить начало развития усталости при физических нагрузках. В этом заключается гипотетический механизм эргогенного гликоген-сберегающего действия L-карнитина, который, как предполагается, переключает получение энергии из углеводного на жировой источник. Такой механизм может (опять же теоретически) увеличивать выносливость (отдалять наступление усталости).''
== L-карнитин при физических нагрузках – эргогенный эффект ==
=== Динамика внутримышечного L-карнитина в процессе физических нагрузок ===
[[Image:Karnitin_Ris_7.jpg|250px|thumb|right|Рис.7. Соотношение вне- (плазма крови) и внутриклеточных (скелетные мышцы) компонентов пула карнитина в покое (REST) и при физических нагрузках (EXERCISE). Преобладание L-карнитина (4000 мкмол) над ацил-карнитином (400 мкмол) в мышечных клетках в покое, и обратная ситуация при нагрузке: преобладание ацил-карнитина (3900 мкмол) над L-карнитином (500 мкмол). Из презентации E.P.Brass.]]
В ходе тренировок происходит снижение концентрации L-карнитина в клетках скелетных мышц, пропорциональное интенсивности и длительности физических нагрузок (H.Karlic, A.Lohninger, 2004). Во время отдыха около 80% общего пула L-карнитина представлено самим L-карнитином, 15% - короткоцепочечными ацил-карнитинами, и 5% - длинноцепочечными ацил-карнитинами. В ходе низкоинтенсивных тренировок (например, ниже [[Лактатный порог|лактатного порога]]) не наблюдается изменений качественного и количественного состава пула карнитина. В противоположность этому, уже при 10-минутной высокоинтенсивной физической нагрузке происходит перераспределение пула карнитина в пользу короткоцепочечного ацил-карнитина: L-карнитин начинает занимать от 20 до 50%, а короткоцепочечные ацил-карнитины – 45-75% от общего пула карнитина (J.A.Romijn и соавт., 1993). Изменение соотношения компонентов пула карнитина в мышечных клетках при физических нагрузках по сравнению с состоянием покоя показано на рис.7 в обобщенном виде (из презентации E.P.Brass). Это перераспределение исчезает медленно после прекращения высокоинтенсивной физической нагрузки. Так, после 30-минутной высокоинтенсивной тренировки не происходит полного восстановления структуры пула карнитина до состояния в период отдыха даже в течение 60 минут. Интересно, что на фоне таких драматических (по выражению H.Karlic и A.Lohninger, 2004) изменений пула карнитина в мышцах, повышение L-карнитина в плазме крови намного меньше, чем можно было бы ожидать (W.R.Hiatt и соавт., 1989). Суммарные результаты большинства исследований показывают, что ''появление значимых изменений в метаболизме карнитина зависит от интенсивности нагрузок, а эргогенное действие пищевых добавок L-карнитина проявляется преимущественно при высокой физической нагрузке (по продолжительности и величине). При этом даже небольшое повышение уровня внутримышечного карнитина требует длительного приема пищевых его добавок''. Данные по исследованию пищевых добавок L-карнитина в спорте приведены в таблице 3.
Дополнительно, L-карнитин может проявлять свое эргогенное действие увеличением выносливости. Для проявления такого действия с точки зрения теории необходимо соблюдение следующих условий: концентрации карнитина в мышцах должны быть снижены до такого уровня, которые позволяют карнитин-ацилтрансферазе действовать с большей скоростью и поддерживать повышение скорости окисления жиров в процессе физической нагрузки; пероральный прием карнитина в различных формах должен вызывать повышение концентрации карнитина в мышцах; данное повышение концентрации карнитина в мышцах должно приводить к возрастанию окисления внутриклеточных жирных кислот и триацилглицеролов в условиях нагрузки и снижению распада гликогена мышц. Все эти взаимосвязанные процессы теоретически должны приводить к замедлению развития усталости. Определенные подтверждения данному положению имеются в клинических исследованиях в спортивной нутрициологии (таблица 3).
'''Таблица 3. Суммарные данные по исследованию пищевых добавок L-карнитина в спорте. По H.Karlic и A.Lohninger (2004) с дополнениями за период 2005-2016.'''
{| class="wikitable"
|-
! Автор !! Количество участников дозирование !! Основные результаты
|-
| rowspan="1" colspan="3" | Улучшение функции мышц, физической готовности и/или восстановления после приема пищевых добавок L-карнитина (эргогенное действие)
|-
| Dragan и соавт., 1987 || n=17. 1 г до тренировки || Достоверные изменения FFA, триацилглицеролов, LA после нагрузки, повышение физической готовности спортсменов
|-
| Siliprandi и соавт., 1990 || n=10. 2 г до ВТ || Стимуляция активности PDH, снижение в плазме лактата и пирувата.
|-
| Vecchiet и соавт., 1990 || n=10. 2 г до ВТ || Возрастание VO2макс.
|-
| Huertas и соавт., 1992 || n=14. 2 г/день 4 недели || Повышение активности в мышцах ферментов, связанных с дыханием
|-
| Arenas и соавт., 1994 || n=16. 2 г/день 4 недели || Повышение активности PDH-комплекса ферментов и VO2макс у бегунов на длинные дистанции.
|-
| Marconi и соавт., 1985 || n=6. 4 г/день 2 недели || Возрастание VO2макс.
|-
| Angelini и соавт., 1993 || n=47. 6 г + инфузия глюкозы || Снижение индуцированного возрастания глюкозы плазмы.
|-
| Gorostiaga и соавт., 1989 || n=10. 2 г/день 28 дней || Увеличение потребления жиров, ниже RQ, без изменения лактата, глюкозы
|-
| Wyss и соавт., 1990 || n=7. 3 г/день 7 дней || Ниже RQ.
|-
| Muller и соавт., 2002 || n=10. 3 г/день 10 дней || Увеличение окисления длинноцепочечных ЖК, ниже RQ.
|-
| Dragan и соавт., 1989 || n=110. 1 г/день 3 недели (молодые атлеты) || Улучшение физической формы, снижение накопления LA.
|-
| Dragan и соавт., 1988 || n=7. 1 г/день 6 недель + 2 г/день в течение 10 дней до соревнования || Снижение физического стресса и повышение готовности.
|-
| Arenas и соавт., 1991 || n=24. 1 г/день 6 недель || Позитивное влияние на восстановление, пред-отвращение снижения содержания карнитина в организме.
|-
| Giamberardino и соавт., 1996 || n=6. 3 г/день 3 недели || Уменьшение повреждения мышц.
|-
| Kraemer и соавт., 2008 || n=10. 2 г/день 3 недели || Уменьшение повреждения мышц.
|-
| rowspan="1" colspan="3" | Нет улучшения функции мышц и физической готовности после приема пищевых добавок L-карнитина (нет эргогенного действия)
|-
| Greig и соавт., 1987 || 2 г/день 14 или 28 дней || Нет изменений VO2макс
|-
| Colombani и соавт., 1996 || n=7. 2 г до старта и после 20 км марафона || Нет эффекта
|-
| Nuesch и соавт., 1999 || n=9. 1 г до и после велоэргометрии || Нет эффекта в условиях максимальных нагрузок.
|-
| Villani и соавт., 2000 || n=8. 4 г/день 14 дней || Нет изменений в содержании карнитина и накоплении лактата в мышцах.
|-
| Decombaz и соавт., 1993 || n=9. 3 г/день 7 дней || Нет изменений в ЧСС, чувстве усталости и параметрах крови.
|-
| Soop и соавт., 1988 || n=7. 5 г/день 5 дней || Нет изменений в потреблении нутриентов мышцами.
|-
| Oyono-Enguelle и соавт., 1988 || n=10. 2 г/день 4 недели || Нет влияния на VO2макс.
|-
| Trappe и соавт., 1994 || n=20. 2 г/день 7 дней. || Нет влияния на показатели при высокоинтенсивных анаэробных нагрузках.
|-
| Eizadi M и соавт., 2009 || n=34. 3 г за 90 мин до нагрузки однократно || Карнитин не влияет на выносливость (велоэргометрия), изменения ЧСС и транспорт FFA в мышцах.
|-
| Hozoori и соавт., 2016 || n=28. 2 г/день 3 недели || Снижение субъективного чувства усталости, но нет изменений состава тела (веса, ТМТ, % жира, % мышечной массы) и потребления пищи.
|-
| rowspan="1" colspan="3" | Комбинированное применение L-карнитина с другими фармаконутриентами
|-
| Kruszewski, 2011 || Бодибилдинг n=63, изо-метрический тренинг n=69, пауэрлифтинг n=50. Карнитин+креатин+НМВ || Эргогенное действие обусловлено НМВ, меньше – креатин. Карнитин не играет какой-либо роли в силовых дисциплинах.
|-
| Hozoori и соавт., 2016 || n=28. 2 г/день 3 недели карнитин+глутамин || Снижение субъективного чувства усталости, но нет изменений состава тела (веса, ТМТ, % жира, % мышечной массы) и потребления пищи. Нет синергизма карнитина и глутамина.
|-
| Evans и соавт., 2017 || n=42 (пожилые). Карнитин 1,5 г; лейцин 2 г; креатин 3 г. 8 недель. || Улучшение состава тела, силы и мощности мышц. Увеличение синтеза mTOR-протеина. Комбинация рекомендована пожилым.
|}
''Примечания'': FFA – свободные жирные кислоты; LA – молочная кислота; ВТ – высокоинтенсивная тренировка; PDH – пируват-дегидрогеназа; VO2макс – максимальный объем потребления кислорода; ЖК – жирные кислоты; ЧСС – частота сердечных сокращений. RQ – дыхательный коэффициент - отношение объема углекислого газа, поступающего из крови в альвеолы легких, к объему кислорода, поглощаемого альвеолами (обычно=0,8). L-карнитин может снижать RQ у спортсменов, что отражает более эффективное сжигание жиров и меньшую утилизацию глюкозы.
Увеличение выносливости в командных видах спорта под влиянием L-карнитина подтверждено в рандомизированном двойном-слепом исследовании G.E.Orer и N.A.Guzel (2014). У 26 молодых футболистов (возраст 17-19 лет, кандидаты в профессиональную футбольную команду высшей лиги Турции) изучалось наличие и дозо-зависимость эффекта пищевых добавок L-карнитина при однократном приеме в дозах 3 (LK-3) и 4 (LK-4) г/день в отношении накопления лактата. Режим регулярных физических нагрузок включал 5 тренировочных дней в неделю (4 тренировки и один матч). Тестирование показателей физической формы проводилось на беговой дорожке при начальной скорости бега 8 км/час с постепенным нарастанием до 10 км/час и дальнейшим увеличением на 1 км/час до полного отказа. Образцы крови для определения лактата брались до, во время бега и после его окончания. Анализ данных показал, что L-карнитин повышает лактатный порог (необходима большая скорость бега для увеличения содержания лактата в плазме крови) и уменьшает количество лактата в крови по сравнению с плацебо в конце нагрузочного периода. Этот эффект не носит дозо-зависимого характера (действие доз 3 и 4 грамма примерно одинаково). В то же время необходимо подчеркнуть, что меньшие дозы L-карнитина при однократном приеме (1-2 г) перед марафонским бегом 20 км (P.Colombani и соавт., 1996) и беговым тестом на дорожке в лабораторных условиях (R.Nuesch и соавт., 1999) не изменяли содержание лактата в крови. Таким образом, ''положительный эргогенный эффект L-карнитина при однократном приеме в отношении выносливости проявляется только при превышении дозы свыше 3 грамм, и сопровождается повышением лактатного порога и уменьшением динамики накопления лактата в плазме крови, без влияния на физиологические параметры.''
При хроническом приеме L-карнитина в дозе 4 г/день спортсменами-мужчинами (n=14) не обнаружено изменений лактата крови во время тренировок по сравнению с контролем, а также изменений уровня мышечного карнитина (C.Barnett и соавт., 1994). Сходные отрицательные результаты хронического приема L-карнитина в дозе 3 г/день в отношении лактата, сердечного ритма, потребления кислорода и паттерна жирных кислот крови получены и в другой работе (J.Decombaz и соавт., 1993). Это означает, что имеет место адаптация метаболизма L-карнитина к постоянному экзогенному поступлению этого соединения.
=== Сравнительная эффективность эргогенного действия L-карнитина у тренированных и нетренированных лиц ===
Выраженность эргогенного действия L-карнитина при введении в организм может определяться не только интенсивностью и продолжительностью тренировок, но и исходным уровнем тренированности человека (общей физической активностью, паттерном тренировочного процесса). В работе J.Leelarungrayub и соавторов (2016) проведена оценка эффективности одиночной дозы карнитина на метаболические процессы, показатели беговой активности (тестовая физическая нагрузка) и профиль липидов плазмы крови у двух категорий лиц: 1) с низкой физической активностью (НФА); 2) спортсменов.
'''Таблица 4. Метаболические изменения и показатели во время бега до и после приема L-карнитина у лиц с разной спортивной подготовкой'''
<table border="1" style="border-collapse:collapse;" cellpadding="3">
<tr><td rowspan="2">
<p>Показатели</p></td><td colspan="3">
<p>Лица с низкой физической активностью - НФА (п=15)</p></td><td colspan="3">
<p>Спортсмены (п=15)</p></td></tr>
<tr><td>
<p>Контроль</p></td><td>
<p>Плацебо</p></td><td>
<p>L-карнитин</p></td><td>
<p>Контроль</p></td><td>
<p>Плацебо</p></td><td>
<p>L-</p>
<p>карнитин</p></td></tr>
<tr><td>
<p>VО2 (80% MHR)</p></td><td>
<p>28,6±1,2</p></td><td>
<p>29,4±1,5</p></td><td>
<p>32,8±1,9<sup>**</sup></p></td><td>
<p>29,7±1,6</p></td><td>
<p>27,1±1,4</p></td><td>
<p>36,0±1,9<sup>*</sup></p></td></tr>
<tr><td>
<p>VT</p></td><td>
<p>3,2±0,5</p></td><td>
<p>3,1±0,5</p></td><td>
<p>3,4±0,7</p></td><td>
<p>3,4±0,5</p></td><td>
<p>3,5±1,3</p></td><td>
<p>5,3±0,6<sup>*</sup></p></td></tr>
<tr><td>
<p>RT</p></td><td>
<p>9,4±1,4</p></td><td>
<p>9,3±1,7</p></td><td>
<p>9,4±1,7</p></td><td>
<p>8,9±1,1</p></td><td>
<p>9,4±1,1</p></td><td>
<p>11,1±1,2<sup>*</sup></p></td></tr>
<tr><td>
<p>F (80% МНЮ</p></td><td>
<p>4,2±1,6</p></td><td>
<p>4,1±1,4</p></td><td>
<p>3,8±1,0</p></td><td>
<p>4,5±1,8</p></td><td>
<p>4,1±1,0</p></td><td>
<p>3,4±1,0<sup>**</sup></p></td></tr>
</table>
''Примечания'': VO2 (80% MHR) – потребление кислорода при 80% MHR (мл/кг/мин); VT – вентиляционный порог (мин); RT – время бега (мин); F (80% MHR) - усталость при нагрузке в 80% MHR (максимальная частота сердечных сокращений). <sup>*</sup> - достоверные изменения по сравнению с другими группами; <sup>**</sup> - достоверные изменения по сравнению с контролем и плацебо в группе.
В исследовании приняло участие 30 человек, из которых половина представляла игроков в футбол, баскетбол и специалистов по стендовой стрельбе. Их показатели сравнивались с мало-тренирующимися мужчинами (менее 3 раз в неделю и низкая интенсивность тренировок). L-карнитин принимался внутрь в капсулах по 500 мг в суммарной однократной дозе 2 г/день за час до тестирования на беговой дорожке. В таблице 4 представлены данные, отражающие изменения утилизации энергии. У лиц с НФА на фоне L-карнитина отмечено достоверное повышение уровня VO2 при 80% MHR по сравнению с плацебо (+11,6%). Сходные, но более выраженные изменения отмечены у атлетов на фоне приема карнитина (+32,8%). У спортсменов отмечено также достоверное повышение вентиляционного порога (+51,4%), времени бега до усталости по беговой дорожке (+18%) и снижение субъективного чувства усталости после нагрузки по визуальной аналоговой шкале (-17%), чего не наблюдалось в группе лиц с НФА. В группе НФА также не отмечено изменений профиля липидов плазмы крови (холестерола, триглицеридов, HDL и VLDL). У спортсменов отмечено снижение уровня триглицеридов (-11,8%), без изменения других показателей липидного обмена. Полученные данные показывают, что L-карнитин увеличивает потребление кислорода в ответ на физическую нагрузку, причем в большей степени у хорошо тренированных лиц. Авторы считают это проявлением базового механизма действия L-карнитина – бета-оксидацию жиров в митохондриях скелетных мышц (A.M.Johri и соавт., 2014). Таким образом, дополнительный прием карнитина увеличивает продукцию энергии, защищает ткани от оксидативного стресса и воспаления в процессе тренировок. Важным результатом данного исследования является увеличение времени бега до усталости, повышение вентиляционного порога и снижение субъективного чувства усталости у спортсменов, что в совокупности говорит об увеличении выносливости. Этот феномен отсутствует у лиц, не привыкших к постоянным повышенным физическим нагрузкам. Следовательно, ''у спортсменов (тренированных лиц) прием даже одиночной дозы L-карнитина 2 г/день за 60 минут до нагрузки может повышать выносливость. С другой стороны, у нетренированных лиц L-карнитин при однократном приеме перед нагрузкой неэффективен.''
Возможно, с возрастом адаптационная способность карнитинового метаболического цикла снижается, и введение экзогенного карнитина становится эффективным даже при низкой физической нагрузке или без нее, а также проявляется синергизм карнитина с другими нутриентами-нутраболиками (лейцин, креатин). Так, в работе M.Evans и соавторов (2017) показано, что ''8-недельный курсовой прием карнитина поддерживает мышечную массу и силу (препятствует ее снижению) у пожилых лиц, а его комбинация с креатином и лейцином – увеличивает эти показатели по сравнению с исходными величинами.'' Возможно, что в данной ситуации, как и в спорте высших достижений при критических и продолжительных нагрузках, имеет место выраженный дефицит карнитина. Такой резкий дефицит может быть обязательным условием для проявления эргогенного эффекта L-карнитина.
=== Влияние L-карнитина на потребление пищи и состав тела спортсменов ===
Оценка влияния пищевых добавок L-карнитина в отдельности и в комбинации с L-глутамином на состав тела и потребление пищи у профессиональных футболистов проведено M.Hozoori и его коллегами в 2016 году.
'''Таблица 5. Характеристика участников исследования M.Hozoori и соавт. (2016)'''
<table border="1" style="border-collapse:collapse;" cellpadding="3">
<tr><td rowspan="2">
<p>Показатели</p></td><td colspan="4">
<p>Исследуемые группы</p></td></tr>
<tr><td>
<p>Плацебо</p></td><td>
<p>Карнитин+Глутамин</p></td><td>
<p>Глутамин</p></td><td>
<p>Карнитин</p></td></tr>
<tr><td>
<p>Возраст (годы)</p></td><td>
<p>20,7 ± 0,7</p></td><td>
<p>21,2 ±0,6</p></td><td>
<p>21,2 ±0.6</p></td><td>
<p>20,7 ± 0.7</p></td></tr>
<tr><td>
<p>Рост(см)</p></td><td>
<p>171,7 ± 6,0</p></td><td>
<p>173.0 ±4,2</p></td><td>
<p>173.0 ±5.8</p></td><td>
<p>175.0 ±5.1</p></td></tr>
<tr><td>
<p>Вес (кг)</p></td><td>
<p>65,2 ± 7,1</p></td><td>
<p>59.9 ± 6,2</p></td><td>
<p>61,5 ±7,6</p></td><td>
<p>64,9 ± 4,4</p></td></tr>
<tr><td>
<p>ИМТ (кг/м2)</p></td><td>
<p>22,2 ± 2,8</p></td><td>
<p>19,9 ±1,6</p></td><td>
<p>20,5 ± 1.9</p></td><td>
<p>21,2 ±1.4</p></td></tr>
<tr><td>
<p>Жировая масса (%)</p></td><td>
<p>15,5 ± 1,7</p></td><td>
<p>12,8 ±3,1</p></td><td>
<p>16,3 ± 3</p></td><td>
<p>12,6 ±3,1</p></td></tr>
<tr><td>
<p>VO2макс</p>
<p>(мл/кг/мин)</p></td><td>
<p>42,1 ± 7,8</p></td><td>
<p>45,7 ±6,2</p></td><td>
<p>47,5 ± 5,8</p></td><td>
<p>44,0 ± 5,3</p></td></tr>
<tr><td>
<p>История тренировок</p>
<p>(месяцы)</p></td><td>
<p>56,0 ± 8,1</p></td><td>
<p>55,4 ± 5,3</p></td><td>
<p>51,7 ± 7,3</p></td><td>
<p>52,6 ±4,8</p></td></tr>
</table>
'''Таблица 6. Сравнение состава тела в 4-х группах участников до и после пищевых интервенций (M.Hozoori и соавт., 2016)'''
<table border="1" style="border-collapse:collapse;" cellpadding="3">
<tr><td>
<p>Показатели/группы</p></td><td>
<p>До приема добавок</p></td><td>
<p>После приема добавок</p></td></tr>
<tr><td>
<p>Вес (кг) </p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>59.9 ± 6,2 </p>
<p>61,5 ±7,6</p>
<p>64.9 ± 4,4 </p>
<p>65,2 ± 7,2</p></td><td>
<p></p>
<p>60,7 ± 6,1 </p>
<p>61,5 ±7,8</p>
<p>65.4 ± 4,9</p>
<p>65.5 ±7,1</p></td></tr>
<tr><td>
<p>Общая вода тела (кг) </p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>38,2 ±3,8 </p>
<p>37,0 ±4,6 </p>
<p>41,6 ±2,6 </p>
<p>39.5 ±3.0</p></td><td>
<p></p>
<p>39,1 ±3,9 </p>
<p>37,6 ±4,7 </p>
<p>42,3 ± 2,5 </p>
<p>39.8 ±3.2</p></td></tr>
<tr><td>
<p>Общий протеин тела (кг) </p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>10.3 ±1,1 </p>
<p>10,1 ±1,2</p>
<p>11.3 ±0.7 </p>
<p>10,9 ± 0,9</p></td><td>
<p></p>
<p>10.4 ±1,2 </p>
<p>10,2 ±1,2</p>
<p>11.4 ±0,6 </p>
<p>11,0 ±0,8</p></td></tr>
<tr><td>
<p>Общая мышечная масса тела (кг)</p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>29,1 ±3,2 </p>
<p>28,4 ± 3,6 </p>
<p>32,0 ±2,1 </p>
<p>30,9 ± 2,5</p></td><td>
<p></p>
<p>29.7 ± 3,3</p>
<p>28.8 ± 3,4 </p>
<p>32,4 ± 2,1 </p>
<p>31,1 ± 2,4</p></td></tr>
<tr><td>
<p>Индекс Массы Тела (ИМТ, кг/м2)</p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>19,9 ±1,6 </p>
<p>20,5 ± 1,9 </p>
<p>21,2 ±1,4</p>
<p>22,1 ±2,8</p></td><td>
<p></p>
<p>20.2 ±1,5 </p>
<p>20,5 ± 2,0</p>
<p>21.3 ±1,5 </p>
<p>22,2 ± 2,8</p></td></tr>
<tr><td>
<p>Общий жир тела (кг) </p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>7,7 ±2,2 </p>
<p>10,2 ± 2,6 </p>
<p>8,2 ±2.3</p>
<p>10,4 ± 5,8</p></td><td>
<p></p>
<p>7.3 ± 1,7</p>
<p>9.3 ± 2,3</p>
<p>7.8 ± 2.6</p>
<p>9.9 ± 6,2</p></td></tr>
<tr><td>
<p>Процент жира тела (%) </p>
<p>Карнитин</p>
<p>Глутамин</p>
<p>Карнитин+Глутамин</p>
<p>Плацебо</p></td><td>
<p></p>
<p>12,8 ±3,1 </p>
<p>15,3 ± 3,0</p>
<p>12.5 ±3,1</p>
<p>14.6 = 7.1</p></td><td>
<p></p>
<p>12,2 ± 2,6 </p>
<p>14,9 ±2,7</p>
<p>11.8 ±3,7</p>
<p>14.9 = 7.5</p></td></tr>
</table>
'''Таблица 7. Сравнение показателей физической готовности в 4-х группах участников до и после пищевых интервенций (M.Hozoori и соавт., 2016)'''
<table border="1" style="border-collapse:collapse;" cellpadding="3">
<tr><td>
<p>Показатель</p></td><td>
<p>Карнитин</p></td><td>
<p>Глутамин</p></td><td>
<p>Карнитин-Глутамин</p></td><td>
<p>Плацебо</p></td></tr>
<tr><td>
<p>V02макс</p>
<p>(мл/кг/мин)</p>
<p>До</p>
<p>После</p></td><td>
<p></p>
<p></p>
<p>44.0 ± 5,3</p>
<p>45.0 ± 5.0</p></td><td>
<p></p>
<p></p>
<p>45.7 ± 5,8</p>
<p>41.8 ±4.1</p></td><td>
<p></p>
<p></p>
<p>45,7 ± 2,4 </p>
<p>45.1 ±3.1</p></td><td>
<p></p>
<p></p>
<p>42,1 ± 7.7 </p>
<p>42.6 ± 4.7</p></td></tr>
<tr><td>
<p>Инстанция (м)</p>
<p>До</p>
<p>После</p></td><td>
<p></p>
<p>1020 ± 161 </p>
<p>1040± 151</p></td><td>
<p></p>
<p>1120 ±160 </p>
<p>1047 ± 98</p></td><td>
<p></p>
<p>1072 ± 83 </p>
<p>1078 ±91</p></td><td>
<p></p>
<p>1005 ± 152 </p>
<p>994 ± 148</p></td></tr>
<tr><td>
<p>Время бега (сек)</p>
<p>До</p>
<p>После</p></td><td>
<p></p>
<p>753 ± 75 </p>
<p>763 ± 75</p></td><td>
<p></p>
<p>791 ± 71 </p>
<p>760 ± 42</p></td><td>
<p></p>
<p>776 ±38 </p>
<p>779 ± 45</p></td><td>
<p></p>
<p>745 ± 69 </p>
<p>739 ± 77</p></td></tr>
<tr><td>
<p>Усталость (VAS, мм) До</p>
<p>После</p></td><td>
<p></p>
<p>75,7 ± 17 </p>
<p>57 ± 19*</p></td><td>
<p></p>
<p>67,0 ± 13 </p>
<p>71.4 ±11</p></td><td>
<p></p>
<p>53.6 ±30</p>
<p>58.6 ± 24</p></td><td>
<p></p>
<p>64,3 ± 8 </p>
<p>61.4 ± 14</p></td></tr>
</table>
''Примечания'': VAS – визуальная аналоговая шкала субъективной оценки усталости в мм.
В рандомизированном двойном-слепом плацебо-контролируемом (РДСПК) исследовании приняло участие 28 профессиональных мужчин-футболистов, антропометрические данные и некоторые другие показатели которых приведены в таблице 5. Они были разделены на 4 группы: 1) прием 2 г L-глутамина; 2) 2 г L-карнитина; 3) 2 г L-карнитина + 2 г L-глутамина и 4) плацебо, - в течение 21 дня. Оценка показателей физического состояния проводилась до и после курса приема пищевых добавок. Результаты показали отсутствие изменений состава тела (веса, ТМТ, % жира, % мышечной массы) и потребления пищи на фоне любых вариантов пищевых добавок (табл.6). Различий между группами по этим показателям также не обнаружено. В то же время, ''в группе, принимавшей L-карнитин в течение 3-х недель в дозе 2 г/сутки, выявлено достоверное снижение субъективного чувства усталости (табл.7). Не обнаружено синергизма в действии карнитина и глутамина, что ставит под сомнение целесообразность такой комбинации для НМП футболистов (возможно, в командных видах спорта в целом), и более предпочтительным является использование только L-карнитина.''
=== L-карнитин как потенциальный непрямой донатор оксида азота в спорте ===
N.A. Guzel и соавторы (2015) исследовали влияние однократного приема пищевых добавок двух разных доз L-карнитина на продукцию оксида азота и проявления оксидативного стресса после истощающих тренировок у молодых футболистов. В рандомизированном перекрестном исследовании приняло участие 26 молодых здоровых мужчин в возрасте 17-19 лет, которые были разделены на две группы в соответствии с дозой L-карнитина – 3 (n=13) и 4 (n=13) г/день в составе 200 мл фруктового сока. Через 1 час после приема пищевых добавок проводился тест на беговой дорожке с начальной скоростью 8 км/час и последующим увеличением скорости бега на 1 км/час каждые 3 минуты с 1 минутой отдыха перед каждым этапом увеличения скорости бега до полного истощения спортсмена. Образцы крови брались до теста и в течение 5 минут после его окончания. Через неделю «отмывочного» периода вся процедура повторялась вновь, но уже с приемом плацебо. В плазме крови определялось: содержание нитрат-нитритов (NOx), которые, как известно, являются конечными стабильными продуктами оксида азота; TBARs - как показатель перекисного окисления липидов; уровни антиоксиданта глутатиона (GSH). Результаты показали, что L-карнитин в дозе 3 грамма оказывает отчетливое антиоксидантное действие, выражающееся в достоверном повышении уровней GSH и NOx и снижении уровня TBARs. Это свидетельствует о присутствии в механизме действия L-карнитина стимулирующего влияния на процесс образования оксида азота, что роднит это вещество с такими известными веществами как аргинин и цитруллин (см. обзор «Донаторы оксида азота»). Однако, как и в случае с другими непрямыми стимуляторами образования окиси азота, неясна роль этого механизма в увеличении выносливости в спорте при приеме добавок L-карнитина.
Полученные результаты послужили основанием для создания комбинированного варианта – сочетания L-карнитина с аминокислотой аргинином. Патентованная формула носит название ацетил L-карнитин аргината дигидрохлорид с молекулярно связанной аминокислотой аргинином (коммерческое наименование АргиноКарн (ArginoCarn®). В работе R.J.Bloomer и соавторов (2009) показано, что комбинация карнитина и аргинина достоверно повышает концентрацию оксида азота в плазме крови в состоянии покоя, но не меняет при этом других метаболических параметров. К сожалению, эффективность данной комбинации в спорте остается неясной.
Другая серия исследований лаборатории R.J.Bloomer (R.J.Bloomer и соавт., 2007; Р. Jacobs, 2012) касается нового производного – глицин пропионил-L-карнитина гидрохлорида (коммерческое наименование ГликоКарн - glycine propionyl- L-carnitine HСl, GlycoCarn® - сокращенно GPLC), который был впервые разрешен к широкому применению в США в качестве пищевой добавки в 2005 году. Формула состоит из пропионилового эфира карнитина и глицина. R.J.Bloomer и соавторы выполнили два разных контролируемых исследования. В первом (W.A.Smith и соавт., 2008) изучено влияние 8-недельного приема GPLC в дозах 1,5 г и 4,5 г в день (третья группа – плацебо) в условиях циклической тренировочной программы на выносливость у 42 нетренированых мужчин и женщин. До и после тренировочной программы у участников регистрировались основные параметры физических функций (wingate-тест), маркеры оксидативного стресса и показатели работы сердечно-сосудистой системы. В группах с приемом GPLC, в отличие от плацебо, достоверно снижались уровни маркеров оксидативного стресса, при сохранении одинакового прироста показателей физической готовности в wingate-тесте во всех трех группах, отсутствии различий в динамике максимального потребления кислорода до и после физической нагрузки. В то же время выявилась тенденция к увеличению анаэробного порога в группах, принимавших GPLC (9-10% по сравнению с 3% в плацебо-группе). Одним из вероятных объяснений таких изменений является параллельное возрастание концентраций оксида азота в крови, носящее дозо-зависимый характер: в группе, принимавшей 4,5 г GPLC в день увеличение составило +55%; в группе с 1,5 г GPLC - +13%; в группе плацебо - +8%.
Второе исследование явилось логическим продолжением и расширением первого. И если в первой работе участниками были нетренированные лица, то во второй – 15 постоянно тренирующихся мужчин. GPLC в дозе 4,5 г/день принимался участниками в течение месяца в сравнении с плацебо. Рандомизированное двойное-слепое плацебо-контролируемое исследование носило перекрестный характер. Тестировались те же параметры, что и в предыдущей работе. Все участники сначала принимали 4 недели GPLC (тестирование на нагрузки до и после), затем следовал 2-х недельный «отмывочный» период, и такой же 4-х недельный цикл приема плацебо с тестированием до и после. Пробы крови брались до и в течение всего периода после физической нагрузки. Прицельно определялось содержание нитратов/нитритов в плазме крови. Было выявлено достоверное и очень значительное (в среднем +30%, Р=0,0008) возрастание уровней нитратов/нитритов в плазме крови на всех этапах тестирования под влиянием GPLC по сравнению с плацебо. В период отдыха также отмечено увеличение данного показателя на 16-17% (плацебо 4-6%). ''Полученные данные явились первым свидетельством эффективности перорального применения GPLC в повышении продукции организмом оксида азота. Это может приводить к значительному усилению кровотока в работающих скелетных мышцах. Подобный механизм сам по себе уже может обусловливать эргогенный эффект GPLC даже без изменения внутриклеточных процессов в мышечных волокнах. Данные литературы на сегодняшний день позволяют рассматривать глицин пропионил-L-карнитин как наиболее перспективную формулу для практического применения в спортивной медицине.'' В то же время, необходимы дальнейшие масштабные исследования профиля GPLC при остром и хроническом применении в широком диапазоне доз, у лиц с разным уровнем тренированности и характере нагрузок и т.д.
== Влияние L-карнитина на повреждения мышц и отсроченную болезненность мышц после нагрузок ==
С точки зрения спортивной нутрициологии, влияние вещества на процесс развития повреждений мышц в ходе тренировок, а также возникающую после тренировок отсроченную болезненность мышц, хотя и не считается показателем эргогенного действия, тем не менее включено в общий спектр фармакологической активности БАДов в спорте как важный оценочный критерий эффективности. С этих позиций L-карнитин и его производные рассматриваются в качестве антиоксидантов (см. выше), которые потенциально могут защищать скелетную мускулатуру от повреждающего действия свободных кислородных радикалов, образующихся при интенсивных физических нагрузках. Пилотное одиночное-слепое перекрестное исследование в данном направлении впервые выполнено М.А.Giamberardino и соавторами в 1996 году. Как известно, эксцентрические мышечные усилия являются одним из частых источников развития постнагрузочной отсроченной болезненности мышц (DOMS) вследствие повреждения мышечных волокон, устойчивых к действию большинства разрешенных и рекомендованных анальгетиков. В работе М.А.Giamberardino и соавторов исследовано влияние приема пищевых добавок L-карнитина на выраженность болей (визуальная аналоговая шкала – VAS), болевой порог и высвобождение креатин-киназы (СК) при 20-минутном выполнении эксцентрических упражнений на четырехглавую мышцу бедра (главный выпрямитель/разгибатель коленного сустава). В исследовании приняло участие шесть нетренированных лиц (средний возраст 26 лет, рост 173 см, вес 68 кг), которые принимали 3 г/день L-карнитина в течение 3-х недель, а после перерыва в одну неделю, они же – 3 г/день плацебо. L-карнитин достоверно снижал спонтанные боли, боли в мышцах при движении и уровень высвобождения СК, что свидетельствует о способности карнитина при превентивном применении предупреждать развитие болезненности мышц после нагрузки. Авторы считают, что такое положительное влияние L-карнитина обусловлено его вазодилятирующими свойствами (возможно, через образование оксида азота?). ''Повышение мышечного кровотока через расширенные сосуды улучшает энергетический метаболизм и снабжение мышц необходимыми нутриентами, снижает уровень гипоксии и образование альгогенных метаболитов (кининов и простагландинов).''
Развитие научных исследований миопротективных свойств L-карнитина продолжено в лаборатории W.Kraemer (W.Kraemer и соавт., 2008). Они провели исследование влияния превентивного приема L-карнитина (n=10, 2 г/день 3 недели) на болезненность мышц, возникающую у группы так называемых «бойцов выходного дня», т.е. тех лиц, которые посещают тренажерный зал только в выходные дни и дают при этом максимальную нагрузку. Был получен достоверный положительный результат, проявившийся уменьшением субъективных ощущений болезненности мышц и укорочением восстановительного периода (к следующему концу недели). В 2014 году опубликованы результаты исследования К.Parandak и соавторов влияния 2-х недельного превентивного приема L-карнитина в дозе 2 г/день в течение 2-х недель на перекисное окисление липидов и маркеры мышечных повреждений у молодых здоровых мужчин. Выявлено достоверное положительное изменение регистрируемых показателей под действием L-карнитина при выполнении серии интенсивных нагрузочных тестов.
В недавнем рандомизированном двойном-слепом плацебо-контролируемом исследовании B. Nakhostin-Roohi и соавторы (2015) оценивалось влияние 2-х недельного приема L-карнитина на повреждения скелетных мышц после серии интенсивных нагрузочных тестов у молодых здоровых мужчин. 20 участников были рандомизированы в две группы: L-карнитин ( n = 10, 2 г/день) и плацебо (n = 10, 2 г лактозы/день) с приемом пищевых добавок в течение 2-х недель до тестирования – бег на 14 км. Образцы крови брались до тестирования, сразу после него, а также через 2 и 24 часа. Измерялся уровень креатин-киназы (CK), лактат дегидрогеназы (LDH) и общая антиоксидантная активность (TAC). В обеих группах отмечалось достоверное возрастание CK и LDH после нагрузки (p < 0.05). LDH в сыворотке крови был достоверно ниже в группе с карнитином по сравнению с плацебо через 2 и 24 часа после тестирования (p < 0.05), а СК был ниже, чем в плацебо-группе, через 24 часа. TAC плазмы крови достоверно увеличивался в течение всех двух недель приема L-карнитина и сохранялся повышенным по сравнению с плацебо через 24 часа после нагрузки.
Суммируя результаты выполненных работ, можно сделать заключение, что ''2-3-недельный прием L-карнитина в дозе 2 г/день обеспечивает защитное антиоксидантное действие (угнетение оксидативного стресса) в условиях интенсивных физических нагрузок у молодых здоровых мужчин, проявляющееся в снижении уровней маркеров мышечных повреждений в плазме крови, болезненности мышц и ускорении восстановления''. В то же время, превышение дозы 2-3 г/день (4-5 г/день) не сопровождается дальнейшим усилением эффектов L-карнитина, а однократное или курсовое применение таких дозировок нуждается в дальнейшем исследовании.
== Дефицит карнитина в организме, изменение физических показателей и потенциальная роль мельдония в спорте ==
*[[L-карнитин для похудения]]
*[[L-карнитин отзывы]]
*[[L-карнитин и тренировки]]
*[[Карнитин (медицинское применение)]]
*[[Применение L-карнитина]]
*Балыкова Л.А., Ивянский С.А., Пиксайкина О.А., Ефимова Ю.А. Обоснование использования L-карнитина в спортивной медицине. Спортивная медицина: наука и практика. 2011, 1:22-30.
*Angelini A., Imparato L., Landi C. et al. Variation in levels of glycaemia and insulin after infusion of glucose solutions with or without added L-carnitine. Drugs Exp.Clin.Res., 1993, 19:219.
*Arenas J., Ricoy J.R., Encinas A.R. et al. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training, and L-carnitine administration. Muscle Nerve, 1991,14:598.
*Arenas J., Huertas R., Campos Y. et al. Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Lett., 1994, 341:91.
*Barnett C., Costill D.L., Vukovich M.D. Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int.J.Sport Nutr., 1994, 4:280–288.
*Bloomer R.J., Smith W.A., Fisher-Wellman K.H. Glycine propionyl-Lcarnitine increases plasma nitrate/nitrite in resistance trained men. J.Int.Soc.Sports Nutr., 2007, 4(1):22.
*Bloomer R.J., Fisher-Wellman K.H., Tucker P.S. Effect of oral acetyl L-carnitine arginate on resting and postprandial blood biomarkers in pre-diabetics. Nutrition and Metabolism, 2009, 6:25-36.
*Bouitbir J., Haegler P., Singh F. Impaired Exercise Performance and Skeletal Muscle Mitochondrial Functionin Rats with Secondary Carnitine Deficiency. Frontiers in Physiology, 2016, 7(345): 1-13.
*Brass E.P. Supplemental carnitine and exercise. Am.J.Clin.Nutr., 2000, 72(2 Suppl):618S-623S.
*Cao Y., Wang Y-X., Liu Ch-J. Comparison of pharmacokinetics of L-carnitine, AcetylL-carnitine and Propionyl-Lcarnitine after single oral administration of L-carnitine in healthy volunteers. Clin.Invest.Med., 2009; 32 (1): E13-E19.
*Colombani P., Wenk C., Kunz I. et al. Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study. Eur.J.Appl.Physiol.Occup.Physiol., 1996, 73:434.
*Decombaz J., Deriaz O., Acheson K. et al. Effect of L-carnitine on submaximal exercise metabolism after depletion of muscle glycogen. Med.Sci.Sports Exerc., 1993, 25:733.
*Dragan A.M., Vasiliu D., Eremia N.M., Georgescu E. Studies concerning some acute biological changes after endovenous administration of 1 g L-carnitine, in elite athletes. Physiologie, 1987, 24:231.
*Dragan G.I., Wagner W., Ploesteanu E. Studies concerning the ergogenic value of protein supply and L-carnitine in elite junior cyclists. Physiologie, 1988, 25:129.
*Dragan I.G., Vasiliu A., Georgescu E., Eremia N. Studies concerning chronic and acute effects of L-carnitine in elite athletes. Physiologie, 1989, 26:111.
*Eizadi M., Pourvaghar A.A., Nazem F. The Determination of Acute Oral L-Carnitine Ingestion on Physiological and Biochemical Parameters Related with Lipids in Endurance Exercise. J.Babol.Univ.Med.Sci., 2009-2010, 11(5): 1-6.
*El-Hattab A.W., Scaglia F. Disorders of carnitine biosynthesis and transport. Mol.Genet.Metab., 2015, 116(3):107-112.
*Evans A.M., Fornasini G. Pharmacokinetics of L-carnitine. Clin.Pharmacokinet., 2003, 42(11):941-967.
*Evans А.M., Guthrie N., Pezzullo J. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double-blind placebo-controlled study. Nutrition and Metabolism, 2017, 14:7-22.
*Falchetto S., Kato G., Provini L. The action of carnitines on cortical neurons. Can.J.Physiol.Pharmacol., 1971, 49: 1–7.
*Giamberardino M.A., Dragani L., Valente R. et al. Effects of prolonged L-carnitine administration on delayed muscle pain and CK release after eccentric effort. Int.J.Sports Med., 1996, 17:320.
*Gorostiaga E.M., Maurer C.A., Eclache J.P. Decrease in respiratory quotient during exercise following L-carnitine supplementation. Int.J.Sports Med., 1989, 10:169.
*Greig C., Finch K.M., Jones D.A. et al. The effect of oral supplementation with L-carnitine on maximum and submaximum exercise capacity. Eur.J.Appl.Physiol.Occup.Physiol., 1987, 56(4):457–460.
*Guzel N.A., Orer G.E., Bircan F.S. et al. Effects of acute L-carnitine supplementation on nitric oxide production and oxidative stress after exhaustive exercise in young soccer players. J Sports Med Phys Fitness, 2015, 55(1-2):9-15.
*Herzmann C., Whiting S.J., Thomas M. Pharmacokinetics of Acetyl-L-Carnitine Given in Single or Multiple Doses to HIV-1 Infected Patients with Toxic Peripheral Polyneuropathy. The Open AIDS J., 2008, 2: 39-42.
*Hiatt W.R., Regensteiner J.G., Wolfel E.E. et al. Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J.Clin.Invest., 1989, 84:1167.
*Hozoori M., Mohtadinia J., Arefhosseini S. Survey of Synergistic Effect of L-carnitine with Glutamine on Body Composition and Dietary Intake in Soccer Players. J.Nutrition Food Security, 2016, 1(1):29-39.
*Huertas R., Campos Y., Díaz E. et al. Respiratory chain enzymes in muscle of endurance athletes: effectof L-carnitine. Biochem.Biophys.Res.Commun., 1992, 188,102–107.
*Jacobs Р. The Efficacy of Dietary Supplementation for Enhanced Nitric Oxide Synthesis: The Scientific Evidence. HealthScienceUSA.com., 2012, 15 pp.
*Johri A.M., Heyland D.K., Hetu M.F. et al. Carnitine therapy for the treatment of metabolic syndrome and cardiovascular disease: evidence and controversies. Nutr.Metab.Cardiovasc. Dis., 2014, 24(8):808–814.
*Karlic H., A.Lohninger. Supplementation of L-Carnitine in Athletes: Does It Make Sense? Nutrition, 2004, 20:709 –715.
*Keller J., Ringseis R., Koc A. et al. Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal., 2012, 6(1):70–78.
*Keller J., Couturier A., Haferkamp M. et al. Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr.Metab.(Lond). 2013, 10(1):28.
*Kraemer W.J., Volek J.S., Dunn-Lewis C. L-carnitine supplementation: influence upon physiological function. Curr.Sports Med.Rep., 2008, 7(4):218-223.
*Kreider R.B., Wilborn C.D., Taylor L. et al. ISSN exercise and sport nutrition review: research and recommendations. J.Intern.Soc.Sports Nutr., 2010, 7:7-50.
*Kruszewski M. Changes in maximal strength and body composition after different methods of developing muscle strength and supplementation with creatine, L-carnitine and HMB. Biol.Sport, 2011, 28(2):145-150.
*Leelarungrayub J., Pinkaew D., Klaphajone J. et al. Effects of L-Carnitine Supplementation on Metabolic Utilization of Oxygen and Lipid Profile among Trained and Untrained Humans. Asian J Sports Med., Dec.2016, doi: 10.5812/asjsm.38707.
*Marconi C., Sassi G., Carpinelli A., Cerretelli P. Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur.J.Appl.Physiol.Occup.Physiol., 1985, 54:131.
*Matera M., Bellinghieri G., Costantino G. et al. History of L-carnitine: implications for renal disease. J.Ren.Nutr., 2003, 13: 2-14.
*Miklos A., Ciulea L., Vari C.E. et al. The efficiency and safety of L-carnitine and caffeine after short- and long-term administration. Palestrica of the third millennium – Civilization and Sport, 2016, 17(3): 229–232.
*Muller D.M., Seim H., Kiess W. et al. Effects of oral L-carnitine supplementation on in vivo long-chain fatty acid oxidation in healthy adults. Metabolism, 2002, 51:1389.
*Nakhostin-Roohi B., Khoshkhahesh F., Parandak K.H., Ramazanzadeh R. L-Carnitine Supplementation and Exercise-Induced Muscle Damage. World Academy of Science, Engineering and Technology, Intern.J.Sport Exer.Sci., 2015,2(10):Abstr.
*Nałezcz K.A., Miecz D., Berezowski V., Cecchelli R. Carnitine: transport and physiological functions in the brain. Molecular Aspects of Medicine, 2004, 25:551–567.
*Nuesch R., Rossetto M., Martina B. Plasma and urine carnitine concentrations in well-trained athletes at rest and after exercise. Influence of L-carnitine intake. Drugs Exp.Clin.Res., 1999, 25:167.
*Orer G.E., Guzel N.A. The effects of acute L-carnitine supplementation on endurance performance of athletes. J.Strength Cond.Res., 2014, 28(2):514–519.
*Owen K.Q., Jit H., Maxwell C.V. et al. Dietary L-carnitine suppresses mitochondrial branched chain ketoacid dehydrogenase activity and enhances protein accretion and carcass characteristics of swine. J.Anim.Sci., 2001, 79(12):3104–3112.
*Oyono-Enguelle S., Freund H., Ott C. et al. Prolonged submaximal exercise and L-carnitine in humans. Eur.J.Appl.Physiol.Occup.Physiol., 1988, 58:53.
*Parandak K., Arazi H., Khoshkhahesh F., Nakhostin-Roohi B. The effect of two-week L-carnitine supplementation on exercise induced oxidative stress and muscle damage. Asian J. Sports Med., 2014, 5(2):123-128.
*Rebouche C.J. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults. Metabolism, 1991, 40:1305-1310.
*Reuter S.E., Evans A.M. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin.Pharmacokinet., 2012, 51(9):553–572.
*Roberts P. A., Bouitbir J., Bonifacio A. et al. Contractile function and energy metabolism of skeletal muscle in rats with secondary carnitine deficiency. Am.J.Physiol.Endocrinol.Metab., 309, E265–E274.
*Romijn J.A., Coyle E.F., Sidossis L.S. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am.J.Physiol., 1993, 265:E380.
*Siliprandi N., Di Lisa F., Menabo R. Clinical use of carnitine. Past, present and future. Adv.Exp. Med.Biol., 1990, 272:175.
*Smith W.A., Fry A.C., Tschume L.C., Bloomer R.J. Effect of glycine propionyl-Lcarnitine on aerobic and anaerobic exercise performance. Int.J.Sport Nutr.Exerc.Metab., 2008, 18(1):19-36.
*Soop M., Bjorkman O., Cederblad G. et al. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J.Appl.Physiol., 1988, 64:2394.
*Spaniol M., Brooks H., Auer L. et al. Development and characterization of ananimal model of carnitine deficiency. Eur.J.Biochem, 2001, 268,1876–1887.
*Spaniol M., Kaufmann P., Beier K. et al. Mechanisms of liver steatosis in rats with systemic carnitine deficiency due to treatment with trimethylhydraziniumpropionate. J.Lipid.Res., 2003, 44, 144–153.
*Steiber A., Kerner J., Hoppel C.L. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol.Aspects Med., 2004, 25(5–6):455–473.
*Sung D.J., Kim S., Kim J. et al. Role of l-carnitine in sports performance: Focus on ergogenic aid and antioxidant. Sci and Sports, 2016, [Epub ahead of print]. doi:10.1016/j.
*Trappe S.W., Costill D.L., Goodpaster B. et al. The effects of L-carnitine supplementation on performance during interval swimming. Int.J.Sports Med., 1994, 15:181.
*Vaz F.M., Wanders R.J. Carnitine biosynthesis in mammals. Biochem.J., 2002, 361,417–429.
*Vecchiet L., Di Lisa F., Pieralisi G. et al. Influence of L-carnitine administration on maximal physical exercise. Eur.J.Appl.Physiol.Occup.Physiol., 1990, 61(5-6):486–490.
*Villani R.G., Gannon J., Self M., Rich P.A. L-Carnitine supplementation combined with aerobic training does not promote weight loss in moderately obese women. Int.J.Sport Nutr.Exerc.Metab., 2000, 10(2):199-207.
*Volek J.S., Kraemer W.J., Rubin M.R. et al. L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am.J.Physiol.Endocrinol.Metab., 2002, 282(2): E474-482.
*Wachter S., Vogt M., Kreis R. et al. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clinica Chimica Acta, 2002, 318: 51 – 61.
*Winter S.C. Treatment of carnitine deficiency. J.Inherit.Metab.Dis., 2003, 26: 171-180.
*World antidoping code international standard, Prohibited List, 2017.
*Wyss V., Ganzit G.P., Rienzi A. Effects of L-carnitine administration on VO2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia. Eur.J.Appl.Physiol.Occup.Physiol., 1990, 60:1.
*Zaugg C.E., Spaniol M., Kaufmann P. et al. Myocardial function and energy metabolism in carnitine-deficient rats. Cell.Mol.Life Sci., 2003, 60,767–775.
[[Категория:Спортивное_питание]]