67
правок
Спорт-вики — википедия научного бодибилдинга
Изменения
→Механизмы общей анестезии
ГАМКд-рецепторы во многом сходны с другими ионо-тропными рецепторами, в том числе с глициновыми рецепторами и с нейрональными N-холинорецепторами. В терапевтических концентрациях ингаляционные анестетики облегчают открывание хлорных каналов, связанных с глициновыми рецепторами (эти рецепторы играют важную роль в торможении на уровне спинного мозга и ствола мозга). Активируемый глицином ионный ток увеличивается под действием пропофола (Hales and Lambert, 1988), стероидных анестетиков и барбитуратов и не меняется под действием этомидата и кетамина (Masciaet al., 1996). Взаимодействием с глициновыми рецепторами, по-видимому, объясняется способность общих анестетиков вызывать обезболивание. В концентрациях ниже, чем те, которые вызывают анестезию, ингаляционные анестетики подавляют активацию некоторых подтипов нейрональных N-холинорецепторов (Violet et al., 1997; Flood et al., 1997). Этот эффект также может играть роль в обезболивающем действии ингаляционных анестетиков.
[[Кетамин]], [[Окись азота в организме|закись азота ]] и [[Ксенон (ингаляции)|ксенон ]] — единственные общие анестетики, недействующие на ГАМКдГАМК-рецепторы и на глициновые рецепторы. Показано, что эти препараты подавляют активацию других ионотропных рецепторов — глутаматных NMDA-рецепторов (гл. 12). Эти рецепторы представляют собой хемочувствительные катионные каналы с относительной избирательностью для кальция. Они участвуют в долговременной регуляции синаптического проведения (обеспечивая длительную потенциацию); кроме того, они опосредуют нейротоксическое действие глутамата. Кетамин подавляет активацию глутаматных NMDA-рецепторов, соединяясь с расположенными на этих рецепторах участками связывания фенциклидина (Lodge etal., 1982; Anis etal., 1983; Zeilhoferet al., 1992). Полагают, что глутаматные NMDA-рецепторы представляют собой основную молекулярную мишень кетамина. Недавние исследования показали, что закись азота (Mennerick et al., 1998; Jevtovic-Todorovic et al.,1998) и ксенон (Franks et al., 1998; de Sousa et al., 2000) оказывают мощное избирательное подавляющее действие на ионные токи, возникающие при активации глутаматных NMDA-рецепторов. Таким образом, угнетение сознания, вызываемое этими препаратами, также может быть связано с действием на глутаматные NMDA-рецепторы.
Некоторые свойства ингаляционных анестетиков могут быть обусловлены двумя другими механизмами. Во-первых, ингаляционные анестетики повышают проводимость некоторых типов калиевых каналов утечки (Gray et al., 1998; Patel et al., 1999). Эти каналы играют важную рольв поддержании потенциала покоя нейронов. Возможно, способность ингаляционных анестетиков вызывать гиперполяризацию нейронов обусловлена именно действием на эти каналы. Во-вторых, ингаляционные анестетики действуют на механизмы высвобождения медиаторов. Недавно было показано, что эти препараты взаимодействуют с белками, принимающими участие в экзоцитозе синаптических пузырьков (синтаксином, SNAP-25, синаптобревином) (van Swinderen et al., 1999). Этим взаимодействием может объясняться способность ингаляционных анестетиков вызывать пресинаптическое торможение нейронов гиппокампа и, как следствие, играть определенную роль в развитии амнезии.
'''Заключение'''. В настоящее время считается, что механизм действия большинства неингаляционных анестетиков обусловлен преимущественно их влиянием на ГАМКА-рецепторы, а также, вероятно, на некоторые другие рецепторы, сопряженные с ионными каналами. Галогензамещенные ингаляционные анестетики действуют на разнообразные молекулярные мишени и потому вызывают все составляющие общей анестезии. Закись азота, кетамин и ксенон представляют собой третью группу общих анестетиков: они вызывают угнетение сознания, подавляя активацию глутаматных NMDA-рецепторов.