2149
правок
Спорт-вики — википедия научного бодибилдинга
Изменения
→Количественная оценка взаимодействия рецепторов с антагонистами
=== Количественная оценка взаимодействия рецепторов с антагонистами ===
[[Image:Gud_2_8.jpg|300px|thumb|right|Рисунок 2.8. Механизмы действия антагонистов.]]
Как правило, антагонисты так или иначе блокируют рецепторы. Конкурентный антагонист не обладает внутренней активностью, но имеет сродство к рецептору и конкурирует с агонистом за участки связывания. Для конкурентных антагонистов характерен параллельный сдвиг вправо кривой доза—эффект для агониста; максимальный эффект агониста не изменяется (рис. 2.8, А). Величина этого сдвига зависит от концентрации антагониста и его сродства к рецепторам и, следовательно, может служить показателем сродства антагониста к рецепторам. Впервые это было отмечено Шилдом в 1957 г. Следует помнить, что частичные агонисты тоже могут конкурировать с полными агонистами за участки связывания с рецептором. Но, в отличие от антагонистов, которые в достаточной концентрации могут полностью заблокировать действие полных агонистов, частичные агонисты с ростом концентрации подавляют эффект полных агонистов только до определенного уровня — своего максимального эффекта. Таким образом, частичные агонисты можно применять в тех случаях, когда необходимо ослабить стимуляцию рецепторов, полностью не блокируя их.
Если участки связывания агониста и антагониста с рецептором разные, последний тоже относят к неконкурентным антагонистам. Такой антагонизм обусловлен аллостерическим взаимодействием (рис. 2.8, В). Амостерические антагонисты снижают сродство рецептора к агонистам. В некоторых случаях аллостерическое взаимодействие приводит к усилению действия агонистов, то есть препараты действуют как синергисты (рис. 2.8, Г). Синергисты можно использовать для усиления сигнала от рецепторов и, что особенно важно, для восстановления опосредованных ими физиологических эффектов в тех случаях, когда снижено число рецепторов (миастения, болезнь Альцгеймера).
Благодаря молекулярно-генетическим методам, которые позволили усилить экспрессию рецепторов, выявить и синтезировать дефектные рецепторы, постоянно активированные вследствие мутаций, был открыт новый тип антагонистов — обратные агонисты. Как уже упоминалось выше, рецепторы могут спонтанно (в отсутствие лиганда) принимать активированную конформацию и вызывать клеточную реакцию. Наблюдать клеточную реакцию в отсутствие агониста обычно не удается из-за того, что доля активированных рецепторов слишком мала. Если же усилить экспрессию рецепторов или сдвинуть с помощью направленного мутагенеза равновесие между неактивированными и спонтанно активированными рецепторами в сторону последних, конститутивная (не обусловленная связыванием с агонистом) активация рецепторов вызовет заметную клеточную реакцию, которая не подавляется при добавлении конкурентного антагониста. Поскольку обратные агонисты избирательно связываются с неактивированными рецепторами, сдвигая равновесие в сторону последних, они подавляют конститутивный сигнал от рецепторов. В отсутствие конститутивной активации рецепторов обратные агонисты ведут себя как конкурентные антагонисты. Этим отчасти можно объяснить, почему обратный агонизм был открыт недавно, а некоторые препараты, которые теперь относят к обратным агонистам, прежде считались конкурентными антагонистами.
Расшифровка генома человека дала новый толчок открытию ранее неизвестных рецепторов и новых их классов. Вместе с колоссальными возможностями, открывшимися благодаря новым методам разработки лекарственных средств (комбинаторная химия, технологии рекомбинантных ДНК), это позволяет надеяться на появление огромного разнообразия высокоизбирательных лекарственных средств.
== Читайте также ==