Вверх

Спорт-вики — википедия научного бодибилдинга

Изменения

Перейти к: навигация, поиск

Рецепторы

11 282 байта добавлено, 10 лет назад
Нет описания правки
'''Кальций'''. Еще один хорошо изученный второй посредник — внутриклеточный Са2+. Ионы Са2+ поступают в цитоплазму разными путями: по мембранным каналам (зависимым от G-белков, потенциалзависимым, регулируемым К+ либо самим Са +), а также по каналам, расположенным в особых участках эндоплазматического ретикулума и открывающимся под действием ИФ3, а в скелетных мышцах — в результате деполяризации мембраны. Удаление кальция из цитоплазмы происходит двумя путями: он поглощается эндоплазматическим ретикулумом или выводится из клетки. Са2+ передает сигналы гораздо большему числу белков, чем цАМФ — ферментам, участвующим в клеточном метаболизме, протеинкиназам, кальцийсвязывающим белкам. Последние взаимодействуют с другими конечными и промежуточными эффекторами.
 
== Классификация рецепторов ==
 
Традиционно рецепторы лекарственных средств выявляли и классифицировали на основании эффектов и относительной активности действующих на эти рецепторы избирательных агонистов (стимуляторов) и антагонистов (блокаторов). Например, эффекты ацетилхолина, которые воспроизводятся при взаимодействии с холинорецепторами алкалоида мускарина и блокируются атропином, называют мускариновыми эффектами, а эффекты, которые воспроизводятся при взаимодействии с холино-рецепторами никотина, — никотиновыми эффектами. Рецепторы, которые опосредуют действие мускарина и никотина, получили название соответственно М- и N-xoлинорецепторов. Хотя подобная классификация обычно не отражает механизм действия лекарственных средств, она удобна для систематизации их эффектов. Действительно, утверждение, что лекарственное средство стимулирует рецепторы определенного типа, одновременно определяет спектр эффектов данного препарата и вещества, усиливающие или ослабляющие эти эффекты. Однако правомочность таких утверждений может меняться с обнаружением новых типов и подтипов рецепторов, открытием дополнительных механизмов действия лекарственного средства или ранее неизвестных побочных эффектов.
 
'''Подтипы рецепторов'''. С появлением все более разнообразных, высокоизбирательных лекарственных средств стало ясно, что ранее известные типы рецепторов делятся на множество подтипов. Существенным подспорьем в изучении новых подтипов рецепторов стали методы молекулярного клонирования, а получение рекомбинантных рецепторов облегчило создание избирательно действующих на эти рецепторы лекарственных средств. Разные, но родственные подтипы рецепторов часто (хотя и не всегда) взаимодействуют с разными агонистами и антагонистами. Рецепторы, для которых избирательные агонисты и антагонисты не обнаружены, обычно относят не к отдельному подтипу, а к изоформам одного и того же рецептора. Отдельные подтипы могут различаться и по механизмам внутриклеточной передачи сигнала. М1 - и М3-холинорецепторы, например, действуют через белок Gq, который активирует фосфолипазу С и опосредованно вызывает выброс Са2+ из внутриклеточных депо, а М2- и М4-холинорецепторы — через белок Gj, который ингибирует аденилатциклазу. Впрочем, деление рецепторов на типы и подтипы зачастую определяется не механизмом действия, а случайным выбором или устоявшимися представлениями. Так, a1, а2- и β-адренорецепторы различаются по реакции на лекарственные средства и по механизму передачи сигнала (активируют соответственно белки Gj, Gq и GJ, хотя а- и β-адренорецепторы относят к разным типам, а а1- и а2-адренорецепторы — к разным подтипам внутри одного типа. Изоформы а1-адренорецепторов — а1А, а1В и а1D — мало различаются по своим биохимическим свойствам; то же самое можно сказать и об изоформах разных подтипов p-адренорецепторов (β1,β2 и β3).
 
Различия между подтипами рецепторов используют для создания высокоизбирательных лекарственных средств, например препаратов, оказывающих разное действие на одну и ту же ткань благодаря связыванию с подтипами рецепторов, различающихся механизмами внутриклеточной передачи сигнала. Кроме того, лекарственные средства могут избирательно воздействовать на определенные клетки или ткани, экспрессирующие рецепторы того или иного подтипа. Чем больше избирательность лекарственного средства (по отношению к определенной ткани или по отношению к определенному эффекту), тем более благоприятно соотношение его пользы и нежелательных эффектов.
 
С помощью молекулярно-генетических методов были открыты не только разные изоформы рецепторов, но и гены, кодирующие новые, ранее неизвестные рецепторы. Многие из этих рецепторов уже отнесены к тому или иному известному классу, а их функция изучена с помощью соответствующих лигандов. Однако для некоторых рецепторов лиганды до сих пор не найдены. Есть надежда, что выяснение физиологических функций таких рецепторов и обнаружение эндогенных лигандов позволит разработать новые лекарственные средства для борьбы с пока неизлечимыми болезнями.
 
Открытие множества изоформ одного и того же рецептора, кодируемых разными генами (особенно если эти изоформы не различаются по механизмам внутриклеточной передачи сигнала и взаимодействуют с одними и теми же эндогенными лигандами), заставляет задуматься об их функции. Возможно, разнообразие генов, кодирующих разные изоформы одного рецептора, необходимо для того, чтобы независимо регулировать экспрессию
рецепторов в разных клетках в соответствии с потребностями организма в разные возрастные периоды. Так или иначе, выявление лигандов, избирательно действующих на те или иные изоформы рецептора, откроет новые возможности для целенаправленного медикаментозного лечения.
 
== Действие лекарственных средств, не опосредованное рецепторами ==
 
Не все лекарственные средства действуют через макромолекулярные структуры — рецепторы. Некоторые препараты взаимодействуют с небольшими молекулами или ионами, присутствующими в организме в норме либо при том или ином патологическом состоянии. Так, антациды нейтрализуют соляную кислоту в желудке. Месна (препарат, который быстро выводится почками и нейтрализует свободные радикалы) связывается с активными метаболитами некоторых противоопухолевых средств, уменьшая таким образом их побочное действие на мочевые пути (гл. 52). Действие другихлекарственных средств зависит не от их химического строения, а от их коллигативных свойств. Так, некоторые биологически малоактивные вещества (например, маннитол) можно вводить в количествах, достаточных для повышения осмоляльности биологических жидкостей, и таким образом менять распределение внеклеточной и внутриклеточной жидкости (гл. 29). С помощью этих веществ можно усилить диурез, увеличить ОЦК, устранить отек головного мозга. Кроме того, их применяют в качестве слабительных.
 
Некоторые лекарственные средства могут встраиваться в компоненты клетки и изменять их функции благодаря структурному сходству с входящими в состав этих компонентов веществами. Например, аналоги пуринов и пиримидинов встраиваются в нуклеиновые кислоты и используются в качестве противовирусных и противоопухолевых средств (гл. 50 и 52).
== Читайте также ==

Навигация