Вверх

Спорт-вики — википедия научного бодибилдинга

Изменения

Перейти к: навигация, поиск

Протеолитические ферменты

361 байт добавлено, 3 года назад
Нет описания правки
'''Авторы''': д.м.н. [[Александр Дмитриев|Александр Владимирович Дмитриев]], врач-эндокринолог [[Участник:Алексей_Калинчев|Алексей Александрович Калинчев]]
Интерес к '''протеолитическим ферментам (ПФ)''' в спортивной нутрициологии и в спортивной медицине в целом связан с двумя неоспоримыми свойствами этих [[Биологически активные добавки|биологически активных добавок (БАДов)]]. Во-первых, они являются частью естественной системы переваривания [[протеин]]ов и пептидов в [[Строение пищеварительной системы|желудочно-кишечном тракте (ЖКТ)]], что обеспечивает более высокий уровень расщепления молекул белка с образованием низкомолекулярных пептидов и [[Аминокислоты|аминокислот]] (особенно [[BCAA|ВСАА]] и [[глутамин]]а) с их собственным [[Эргогенное спортивное питание|эргогенным действием]]. Во вторых, исследования последних лет показали способность ПФ протеолитических ферментов при однократном и курсовом назначении уменьшать [[Микротравмы мышц|микроповреждения скелетной мускулатуры]] (Exercise-Induced Muscle Damage - EIMD) и [[Крепатура|отсроченную болезненность мышц после физических нагрузок]] (Delayed Onset of Muscle Soreness - DOMS). Оба этих фактора в совокупности с природным происхождением ПФ и высоким уровнем безопасности (широкий терапевтический диапазон), делает данную группу БАДов перспективными средствами нутритивно-метаболической поддержки (НМП) как начинающих, так и профессиональных спортсменов. Ряд других параметров фармакологического действия ПФ протеолитических ферментов (дозо-зависимость эффекта, определенная специфичность по отношению к субстратам, наличие схем дозирования и пр.) позволяет отнести этот класс веществ к фармаконутриентам.
== Протеолитические ферменты на медицинском и фармацевтическом рынке ==
Протеолитические ферменты растительного и животного происхождения очень давно и широко используются в медицинской практике для лечения нарушений переваривания и всасывания пищи в ЖКТ и функции поджелудочной железы. Исторически первыми были [[пищевые добавки ]] и препараты, содержащие ферменты поджелудочной железы свиней и коров для заместительной терапии недостаточности этого органа. Растительные энзимы, например [[Бромелайн|бромелаин ]] из ананаса, также оказались эффективны для обеспечения [[Переваривание и усвоение белков|переваривания протеинов (]]<ref>Roxas M.RoxasThe role of enzyme supplementation in digestive disorders. Alt.Med.Rev., 2008), 13: 307-314.</ref>. Такой эффект протеолитических ферментов обеспечил первое, с исторической точки зрения, направление применения этой группы веществ – усиление переваривания протеинов, ускоренное высвобождение [[Аминокислоты в спорте|аминокислот ]] (АК), включая [[ВСААаминокислоты|ВСАА]], и абсорбцию легких пептидов и АК в кишечнике при абсолютной или относительной недостаточности эндогенного образования протеаз. По мере развития научной медицинской мысли и накопления опыта использования протеолитических ферментов, формировалось еще одно, не менее важное направление – адъювантная терапия (сопровождение) таких состояний и заболеваний как острая и пост-хирургическая постхирургическая травма, флебиты, [[ревматоидный артрит]] и остеоартриты, злокачественные опухоли и т.д. (<ref name="Пенджиев">Пенджиев А.М.Пенджиев, Абдуллаев А.АбдуллаевЭффективность использования протеолитических ферментов папайи в медицинской практике. Медицинские Науки, 2017; , 1:57-72.</ref><ref>Leipner J.Leipner и соавт, Iten F., Saller R. Therapy with proteolytic enzymes in rheumatic disorders.Biodrugs, 2001; , 15: 779-789.</ref><ref>Leipner J.Leipner, Saller R.SallerTherapy with proteolytic enzymes in oncology. Drugs, 2001), 59: 769-780.</ref>. Пероральное применение протеолитических ферментов (иначе называемых протеазами или протеиназами) по тем или иным показаниям называют '''Системной Энзимной Терапией ''' (''Systemic Enzyme Therapy - SET''), поскольку рассчитано на всасывание и распределение в организме [[Ферменты|ферментов ]] с последующим действием во внутренних средах органов и тканей. Регуляторный статус ферментов этого класса различен и варьирует от рецепторных лекарственных препаратов до ОТС-формул и даже пищевых добавок, с определенной спецификой для отдельных стран. В состав комбинированных препаратов также включают [[витамины]], [[минералы ]] и другие [[Пищевые добавки: научный подход|пищевые добавки]], в частности, олигомерные проантоцианидины, [[кверцетин]] и т.д.
Наиболее часто встречаемые на рынке варианты комбинированных составов с протеазами приведены в таблице 1.
'''Таблица 1. Основные активные ингредиенты некоторых типовых комбинированных препаратов протеолитических ферментов на фармацевтическом рынке США и Европы''' (из <ref name="Lorkowski">Lorkowski G.LorkowskiGastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Review. Int.J.Physiol.Pathophysiol.Pharmacol., 2012, 4(1):10-27.</ref>
<table border="1" style="border-collapse:collapse;" cellpadding="3">
<p>Вариант состава 3</p></td></tr>
<tr><td>
<p>[[Бромелайн]]</p></td><td>
<p>90 мг = 900 F.I.P.-ед.</p></td><td>
<p>45 мг = 450 F.I.P.-ед.</p></td><td>
<p>133-178 мг = 800 ед.</p></td></tr>
<tr><td>
<p>[[Папаин]]</p></td><td>
<p>-</p></td><td>
<p>60 мг = 328 F.I.P.-ед.</p></td><td>
<p>-</p></td></tr>
<tr><td>
<p>[[Панкреатин]]</p></td><td>
<p>-</p></td><td>
<p>100 мг = 300 Ph.</p>
<p>-</p></td></tr>
<tr><td>
<p>[[Химотрипсин]]</p></td><td>
<p>-</p></td><td>
<p>1 mg = 596 F.I.P.-ед</p></td><td>
<p>-</p></td></tr>
<tr><td>
<p>[[Трипсин]]</p></td><td>
<p>48 мг = 24 μkat</p></td><td>
<p>24 мг = 12 μkat</p></td><td>
''Примечания:'' *1 μkat – количество фермента, которое превращает более 1 μM субстрата в секунду при стандартных условиях. Это соответствует 60 F.I.P – единиц. Ph. Eur.-ед протеиназы – протеиназные единицы действия по Европейской Фармакопее. Рутозид (рутин, кверцетин-3-О-рутинозид, софорин) — гликозид флавоноида кверцетина.
Как видно из таблицы 1, в большинстве случаев при формировании состава комбинированных протеолитических препаратов используются растительные протеазы цистеина – бромелаин бромелайн (обязательный компонент) и папаин, а также протеазы серина животного происхождения – трипсин и химотрипсин. Некоторые составы включают панкреатин, амилазу, липазу и/или рутозид. Популярной формой выпуска являются кишечнорастворимые таблетки, покрытые оболочкой, для обеспечения наибольшей концентрации активных веществ в кишечнике (предотвращение распада таблетки в кислой среде желудка). Дозировки ферментов варьируют в диапазоне от 1 до 200 мг/таблетку. Количество протеаз в дозе на прием соответствует ферментной активности, описанной в '''F.I.P. ''' (''F.I.P.-units of the Federation Internationale Pharmaceutique''). Одна F.I.P.-единица – количество фермента, которое способно конвертировать более 1 мкмол субстрата за 1 минуту при стандартных условиях.
== Происхождение, химическая структура, классификация и свойства протеолитических ферментов ==
=== I. Растительные протеазы. ===
==== Протеазы дынного дерева ====
В соответствии с данными А.М.Пенджиева и А.Абдуллаева (2017) <ref name="Пенджиев" /> «высушенный млечный сок (латекс) дынного дерева содержит ряд протеаз: '''[[Папаин]]''' – монотиоловая цистеиновая эндопротеаза. По характеру ферментативного действия ее называют «растительным пепсином». Но, в отличие от пепсина, папаин активен не только в кислых, но и в нейтральных и щелочных средах (диапазон рН 3–12, оптимум рН=5), что важно при часто встречающихся у спортсменов нарушениях кислотного состава желудка. '''Химопапаин''' – монотиоловая цистеиновая протеиназа. Благодаря субстратной специфичности похожа на папаин, но отличается от него электрофоретической подвижностью, стойкостью и растворимостью. '''Протеиназа IV''' – цистеиновая протеиназа, основная протеиназа латекса, составляет около 30 % присутствующего в нем белка. Проявляет высокую степень гомологии с протеиназой III папайи (81 %), химопапаином (70 %) и папаином (67 %). Очень близка к химопапаину по молекулярной массе и заряду молекулы. '''Карикаин''' – наиболее щелочная среди цистеиновых протеиназ латекса папайи. Подобно папаину, карикаин сначала продуцируется в форме неактивного зимогена прокарикаина, содержащего ингибиторный прорегион из 106 N-терминальных аминокислот. Активация фермента заключается в отщеплении прорегиона молекулы без ее последующих конформационных изменений. '''Протеиназа w''' (эндопептидаза А, пептидаза А) – монотиоловая цистеиновая протеиназа. Это полипептид, содержащий 216 аминокислотных остатков и 3 дисульфидные связи. Для проявления его ферментативной активности важно наличие свободного остатка цистеина в активном центре. Проявляет высокую степень гомологии с папаином (68,5 %). По специфичности ферментативного действия напоминает папаин, поскольку связывается с субстратом в участках локализации дисульфидных связей. Для стабилизации комплекса протеиназ папайи с практическими целями используются специальные полимеры, разработанные еще во времена существования СССР. 
==== Протеазы ананаса ====
Физико-химические свойства основной комплексной смеси протеолитических ферментов ананаса – '''[[Бромелайн|бромелаина]]''', - и применение его в клинических условиях, подробно описаны в нескольких обзорах последнего времени (H.R.Maurer, 2001; В.К.Bhattacharyya, 2008; R.Pavan и соавт., 2012; V.Rathnavelu и соавт., 2016), выполненных в научных лабораториях стран - мест произрастания и высокотехнологичной переработки ананаса (в основном, Индии). Бромелаин представляет собой водный экстракт из плодов необработанного ананаса. Это смесь различных тиоловых эндопептидаз и ряда других активных веществ, например фосфатаз, глюкозидаз, пероксидаз, целлюлаз, гликопротеинов, углеводов и некоторых ингибиторов протеаз (В.К.Bhattacharyya, 2008). При этом бромелаин, получаемый из стеблей ананаса отличается по составу от такового из плодов ананаса. Как и в случае папаина, ферментативная активность бромелаина сохраняется в широком диапазоне изменений рН – от кислой до щелочной – 5,5 – 8,0 (S.Yoshioka и соавт., 1991). В настоящее время бромелаин производят из охлажденного ананасового сока путем центрифугирования, ультрафильтрации и лиофилизации. Ферментативная активность получаемого порошка определяется эмпирически на таких белковых субстратах как казеин (FIP-единицы), желатин (единицы переваривания желатина) или хромогенные трипептиды (H.R.Maurer, 2001).
Физико-химические свойства основной комплексной смеси протеолитических ферментов ананаса – '''[[Бромелайн|бромелаина]]''', - и применение его в клинических условиях, подробно описаны в нескольких обзорах<ref name="Maurer">Maurer H.R. Bromelain: biochemistry, pharmacology and medical use, Cellular and Molecular Life Sciences, 2001, 58(9): 1234–1245. </ref><ref name="Bhattacharyya">Bhattacharyya В.К. Bromelain: an overview, Natural Product Radiance, 2008, 7(4):359–363.</ref><ref>Pavan R., Shraddha J.S., Kumar A. Properties and Therapeutic Application of Bromelain: A Review. Hindawi Publishing Corporation Biotechnology Research International, 2012, Article ID 976203, 6 pages, doi:10.1155/2012/976203.</ref><ref>Rathnavelu V., Alitheen N.B., Sohila S. et al. Potential role of bromelain in clinical and therapeutic applications (Review). Biomedical Reports, 2016, 5: 283-288.</ref>, выполненных в научных лабораториях стран - мест произрастания и высокотехнологичной переработки ананаса (в основном, Индии). Бромелаин представляет собой водный экстракт из плодов необработанного ананаса. Это смесь различных тиоловых эндопептидаз и ряда других активных веществ, например фосфатаз, глюкозидаз, пероксидаз, целлюлаз, гликопротеинов, углеводов и некоторых ингибиторов протеаз<ref name= II"Bhattacharyya" />. При этом бромелаин, получаемый из стеблей ананаса отличается по составу от такового из плодов ананаса. Как и в случае папаина, ферментативная активность бромелаина сохраняется в широком диапазоне изменений рН – от кислой до щелочной – 5,5 – 8,0<ref>Yoshioka S., Izutsa К., Asa Y., Takeda Y., Inactivation kineticsof enzyme pharmaceuticals in aqueous solutions, Pharmaceutical Research, 1991, 4, 480–485.</ref>. В настоящее время бромелаин производят из охлажденного ананасового сока путем центрифугирования, ультрафильтрации и лиофилизации. Ферментативная активность получаемого порошка определяется эмпирически на таких белковых субстратах как казеин (FIP-единицы), желатин (единицы переваривания желатина) или хромогенные трипептиды<ref name="Maurer" />.  === Протеазы животного происхождения ===
'''[[Трипсин ]] и [[химотрипсин]]''' – самые известные и клинически изученные сериновые протеазы (эндопептидазы) животного происхождения. В отличие от растительных протеаз, оптимум каталитической активности сериновых протеаз находится в щелочном диапазоне. Трипсин синтезируется в поджелудочной железе в виде неактивного предшественника (профермента) трипсиногена. Трипсин содержит в активном центре остатки серина [[серин]]а и гистидина[[гистидин]]а. Молекула бычьего трипсина (молекулярная масса около 24 кДа) состоит из 223 аминокислотных остатков, образующих одну полипептидную цепь, и содержит 6 дисульфидных связей. Изоэлектрическая точка трипсина лежит при pH 10,8, а оптимум каталитической активности — при pH 7,8—8,0. Химотрипсин – протеаза, катализирующая гидролиз пептидной связи, рядом с которой находится ароматическая аминокислота ([[триптофан]], фенилананин[[фенилаланин]], [[тирозин]]). Механизмы действия трипсина и химотрипсина, а также области их применения в клинической медицине хорошо изучены и отражены в целом ряде руководств, систематических обзоров и мета-анализов (<ref>Barrett A.J.Barrett, Rawlings N.D.RawlingsPerspectives in biochemistry and biophysics. Families and Clans of serine peptidases. Arch.Biochem.Biophys., 1995; , 318(2):247-250.</ref><ref>Page M.J.Page, Di Cera E.Di Cera Serine peptidases: Classification, structure and function. Cell Molec.Life Sci., 2008; , 65(7):1220-1236.</ref><ref>Веремеенко К.Н.ВеремеенкоПротеолитические ферменты поджелудочной железы и их применение в клинике. Киев, 1967; . - 160 с.</ref><ref>Кулаков В.И.Кулаков , Насонова В.А., Савельев В.С.. Системная энзимотерапия. Опыт и соавтперспективы. СПб.: Интер-Медика., 2004 и др.)– 264 с.</ref>.
== Фармакокинетика протеолитических ферментов ==
=== Абсорбция ПФ в желудочно-кишечном тракте и их биологическая активность ===
[[Image:Proteliot_Ris_1.jpg|250px|thumb|right|Рис.1. Динамика концентрации протеолитических ферментов (ПФ) в сыворотке крови крыс (метод меченых изотопов йода-123) после их перорального введения. По оси абсцисс – время в часах после приема ПФ; по оси ординат – относительная концентрация (% от введенной дозы/грамм крови) ПФ в сыворотке крови. Синяя линия и квадраты – панкреатин, красная линия и квадраты - амилаза, черная линия и треугольники – трипсин, зеленая линия и крестики – папаин, фиолетовая линия и звездочки – химотрипсин. Из J.Seifert и соавт., 1995.]]
В обзорной работе G.Lorkowski (2012) <ref name="Lorkowski" /> суммированы имеющиеся данные по абсорбции ПФ в ЖКТ после их перорального приема, фармакокинетике ПФ и даны возможные объяснения механизмам этих процессов. Ранние исследования абсорбции протеаз у животных были выполнены путем перорального приема ферментных субстратов, меченых радиоактивными изотопами. Другим методом было количественное определение в плазме крови собственной эстеразной активности протеаз в отношении специфических субстратов, например, этилового эфира N-бензолил-L-аргинина (BAEE) как субстрата для трипсина, а этилового эфира N-ацетил-L-тирозина (ATEE) как субстрата для химотрипсина, а уровня гемоглобина – для оценки общей протеолитической активности. Экспериментальные исследования показали, что абсорбция ПФ зависит от множества факторов, среди которых наиболее важным является размер молекулы. В серии экспериментальных работ J.Seifert и соавторов (1990,1995) было показано, что после перорального приема (рис.1) меченых иодом-123 таких ПФ как трипсин, химотрипсин, панкреатин и папаин, наблюдается постепенное нарастание концентрации ПФ в крови, дифференцированное по времени и количественным параметрам в зависимости от конкретного ПФ. Прием панкреатина вызывал наибольший прирост концентрации фермента в сыворотке крови с максимумом в течение часа. В течение последующих 6-и часов происходило плавное снижение его концентрации. Для других ПФ (трипсин, химотрипсин и папаин) максимальная концентрация в сыворотке крови достигалась только к 3-ему часу после перорального применения и была существенно ниже (в 3 и более раз) по сравнению с панкреатином. Характерно, что через 6 часов для всех ферментов уровень их концентрации в крови (в процентном соотношении с их введенной дозой на 1 г крови) был примерно одинаковым.
Детальные количественные характеристики изменений показателей ПФ в крови даны в таблице 2.
В другой работе коллективом авторов из Института клинической фармакологии в Берлине (Германия) (I.Roots и соавт., 1995; F.Donath и соавт., 1997; I.Roots, 1997) (табл.4) выявлена четкая дозо-зависимость концентрации бромелаина, трипсина и папаина в плазме крови от введенной суточной дозы фермента, что еще раз подчеркивает, что ''ПФ являются фармаконутриентами, т.е. сочетают способность влиять на нутритивные процессы подобно фармакологическим агентам.''
Подводя итоги выполненным исследованиям фармакокинетики ПФ, G.Lorkowski (2012) <ref name="Lorkowski" /> в своем аналитическом обзоре делает следующее заключение: ''«Прием протеолитических ферментов обеспечивает усвоение организмом физиологически активных протеинов с высоким молекулярным весом. Фармакокинетические исследования показывают дозо-зависимое линейное нарастание концентрации протеаз в различных средах организма, варьирующее в достаточно широких индивидуальных пределах, медленную динамику абсорбции в кишечнике, быстрое и 100% связывание в организме с антипротеазными комплексами. Пероральный прием ПФ увеличивает протеазную активность сыворотки крови с параллельным возрастанием концентрации в плазме крови соответствующих антипротеаз''. Биологическая протеолитическая активность пероральных ПФ определяется взаимодействием с соответствующими рецепторами на поверхности клеток (протеаз-активируемые рецепторы) как в виде свободных протеаз, так и в комплексной форме с антипротеазами. Такой комплекс «протеаза-антипротеаза» вызывает возрастание плазменных концентраций антипротеаз и элиминацию самих комплексов и цитокинов. ''Эти механизмы реализуются при приеме внутрь ПФ в виде кишечнорастворимых таблеток с содержанием растительных и животных протеаз, и обеспечивают стабилизацию и, возможно, улучшение физиологических и иммунологических процессов даже у здоровых лиц. Последнее обстоятельство приобретает особый смысл в спортивной медицине.''
== Протеолитические ферменты – катализаторы высвобождения аминокислот (АК) из протеинов ==
== Протеолитические ферменты как фармаконутриенты для предупреждения и лечения EIMD и DOMS ==
Наряду с опосредованным (через усиление высвобождения аминокислот из протеинов) анаболическим действием, о чем было написано выше, ПФ уже многие годы используются как средства Системной Энзимной Терапии (СЭТ – SET). СЭТ позволяет естественным путем затормозить воспалительные процессы в организме, а также частично решать проблему предотвращения развития воспаления, препятствующую процессу восстановления. Пероральное введение ПФ создает, хотя и невысокую, но эффективную концентрацию свободных и связанных протеиназ в плазме крови (G.<ref name="Lorkowski, 2012)" />. Такие ПФ как трипсин и бромелаин, как и другие эндогенные протеиназы, могут связываться со специфическими (например, альфа-антитрипсин) и неспецифическими (например, альфа-2-макроглобулин) антипротеазами, и предотвращать неконтролируемую деградацию протеинов. Поэтому, способность ПФ контролировать и предотвращать процесс воспаления, легла в основу исследований влияния ПФ на развитие мышечных повреждений в ответ на нагрузки (EIMD) и отсроченную болезненность мышц (DOMS) у лиц, занимающихся спортом. Влияние протеиназ при пероральном приеме на EIMD было изучено в нескольких клинических работах с фокусированием на изменение болей и/или мышечных функций (A.F.Walker и соавт., 2002; T.W.Beck и соавт., 2007; R.A.Orsini, 2007; T.W.Buford и соавт., 2009; J.K. Udani и соавт., 2009). Эти работы показали, что бромелаин и другие протеиназы могут редуцировать мышечное воспаление после получения повреждений в результате нагрузок.
В частности, в рандомизированном двойном-слепом плацебо-контролируемом перекрестном пилотном исследовании J.K.Udani и соавторы (2009) оценивали влияние ПФ на DOMS и связанный с этим дискомфорт у обычной популяции нетренированных (мужчин и женщин) лиц в возрасте от 18 до 45 лет. Трудность оценки результатов этой работы определялась сложностью состава пищевой добавки в капсулах, где выделить эффект каждого из компонентов не представлялось возможным: две капсулы в день содержали суммарно 258 мг ПФ (бромелаин, протеазы из Aspergillus melleus и A. Oryzae; 421 мг экстракта куркумы; 90 мг смеси фитостеролов (бета-ситостерол, кампестерол и стигмастерол); 20 мг витамина С и 6 мг экстракта японского горца (содержит 20% ресвератрола). Количественная оценка мышечных болей проводилась по визуальной аналоговой шкале (VAS) c подразделением на четыре подшкалы (от 0 до 10 баллов). Кроме этого, регистрировались: маркеры воспаления в плазме крови - высокочувствительный С-реактивный белок (hs-CRP), TNF-альфа, интерлейкины IL-1, IL-6; маркер повреждения мышц – креатинфосфокиназа – CPK; стандартные показатели сгибания-разгибания нижних конечностей; диапазон подвижности (ROM) нижних конечностей; расход энергии. Для оценки профиля безопасности пищевых добавок по сравнению с плацебо до начала физических упражнений и через 72 часа после них исследовались: состав форменых элементов крови; функция почек и печени; соотношение протромбиновое время/время частичной тромбопластиновой активизации (PT/PTT). Тестирование проводилось на основе протокола эксцентрических упражнений с приседаниями (нагрузка на квадрицепсы). Результаты исследования показали ''способность изученных сложных по составу пищевых добавок снижать DOMS и ускорять восстановление нетренированных мужчин и женщин после комплекса эксцентрических упражнений. Доказан высокий уровень безопасности перорального применения ПФ.''
В спорте высших достижений, где в подавляющем большинстве случаев имеет место относительная ферментная недостаточность, обусловленная большим объемом поступления белка (в составе диеты, функциональной пищи или добавок протеинов различного происхождения), задачей ферментных препаратов является адекватное переваривание дополнительных протеинов. Соответственно, расчет потребности в экзогенно вводимых ферментах осуществляется, исходя из имеющегося превышения возрастной нормы потребления белка, антропометрических показателей спортсмена и реальной физической нагрузки в процессе тренировок и соревнований, функционального состояния кислотообразующей и ферментообразующей функции ЖКТ.
{{сп|1=1}}
== Читайте также ==
*[[BCAA: научный обзор]]
== Ссылки ==
*Веремеенко К. Н. Протеолитические ферменты поджелудочной железы и их применение в клинике. Киев, 1967. - 160 с.*Кулаков В.И., Насонова В.А., Савельев В.С.. Системная энзимотерапия. Опыт и перспективы. СПб.: Интер-Медика. 2004. – 264 с.*Пенджиев А.М., Абдуллаев А. Эффективность использования протеолитических ферментов папайи в медицинской практике. Медицинские Науки, 2017, 1:57-72.<references/>
*Anderson M.L. A Double-Blind Clinical Study to Investigate the Effects of a Fungal Protease Enzyme System on Metabolic, Hepato-renal, and Cardiovascular Parameters Following 30 Days of Supplementation in Active, Healthy Men. Food Dig., 2013, 4:19–25.
*Barrett A.J., Rawlings N.D. Perspectives in biochemistry and biophysics. Families and Clans of serine peptidases. Arch.Biochem.Biophys., 1995, 318(2):247-250.
*Bartos J. A proprietary enzyme blend designed and optimized to efficiently release BCAAs and glutamine, promoting heightened mTOR activation – for better protein synthesis and skeletal muscle growth. Glanbia Nutrition, IGNITOR, White paper, 2014.
*Beck T.W., Housh T.J., Johnson G.O. et al. Effects of a protease supplement on eccentric exercise-induced markers of delayed-onset muscle soreness and muscle damage. J.Strength Cond.Res., 2007, 21(3):661-667.
*Bhattacharyya В.К. Bromelain: an overview, Natural Product Radiance, 2008, 7(4):359–363.
*Buford T.W., Cooke M.B., Redd L.L. et al. Protease supplementation improves muscle function after eccentric exercise. Med.Sci.Sports Exerc., 2009, 41(10):1908-1914.
*Castell J.V. Intestinal absorption of undegraded Bromelain in humans. In: Gardner MLG, Steffens K.J., editors. Absorption of orally administered Enzymes. Berlin: Springer Verlag, 1995, 47-60.
*Cichoke A.J. Pancreatic enzymes. In: Pizzorno J.and Murray M., editors. Textbook of Natural Medicine. St Louis, MO: Churchill Livingstone, 2006; pp.1131-1146.
*Donath F., Roots I., Mai I. et al. Dose-related bioavailability of bromelain and trypsin after repeated oral administration. Eur J Pharmacol 1997; 52: A146.
*Leipner J., Iten F., Saller R. Therapy with proteolytic enzymes in rheumatic disorders. Biodrugs, 2001, 15: 779-789.
*Leipner J., Saller R. Therapy with proteolytic enzymes in oncology. Drugs, 2001, 59: 769-780.
*Lorkowski G. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Review. Int.J.Physiol.Pathophysiol.Pharmacol., 2012, 4(1):10-27.
*Marzin T., Lorkowski G., Reule C. et al. Effects of a systemic enzyme therapy in healthy active adults after exhaustive eccentric exercise: a randomised, twostage, double-blinded, placebo-controlled trial. BMJ Open Sport Exerc.Med., 2017;2: e000191. doi:10.1136/bmjsem-2016-000191.
*Maurer H.R. Bromelain: biochemistry, pharmacology and medical use, Cellular and Molecular Life Sciences, 2001, 58(9): 1234–1245.
*Miller P.C., Bailey S.P., Barnes M.E. et al. The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J.Sports Sci., 2004, 22, 365–372.
*Oben J., Kothari S.C., Anderson M.L. An open label study to determine the effects of an oral proteolytic enzyme system on whey protein concentrate metabolism in healthy males. J.Int.Soc. Sports Nutr., 2008, 5:10.
*Orsini R.A. Bromelain. Safety and efficacy report. Plastic and Reconstructive Surgery, 2007, DOI: 10.1097/01.prs.0000242503.50548.ee.
*Page M.J., Di Cera E. Serine peptidases: Classification, structure and function. Cell Molec.Life Sci., 2008, 65(7):1220-1236.
*Pavan R., Shraddha J.S., Kumar A. Properties and Therapeutic Application of Bromelain: A Review. Hindawi Publishing Corporation Biotechnology Research International, 2012, Article ID 976203, 6 pages, doi:10.1155/2012/976203.
*Rathnavelu V., Alitheen N.B., Sohila S. et al. Potential role of bromelain in clinical and therapeutic applications (Review). Biomedical Reports, 2016, 5: 283-288.
*Roots I., Donath F., Rex A., Mai I. Pilotstudie zur Untersuchung der relativen Bioverfugbarkeit von Trypsin aus zwei Peroralia. Institut fur Klinische Pharmakologie, Berlin 1995.
*Roots I. Bioverfugbarkeit von Trypsin, Bromelain und Rutin-Metaboliten nach oraler Gabe von Phlogenzym® bei gesunden Probanden. Randomisierte doppelblinde Crossover-Studie gema? GCP. Study No MU- 695 427. Institut fur Klinische Pharmakologie der Med. Fakultat Humboldt-Universitat Berlin, Germany 1997.
*Roxas M. The role of enzyme supplementation in digestive disorders. Alt.Med.Rev., 2008, 13: 307-314.
*Seifert J., Ganser R., Brendel W. Absorption of a proteolytic enzyme originating from plants out of the gastro-intestinal tract into blood and lymph of rats. Z Gastroenterol., 1979, 17: 1-8.
*Seifert J., Siebrecht P., Lange J.P. Quantitative Untersuchungen zur Resorption von Trypsin, Chymotrypsin, Amylase, Papain und Pankreatin aus dem Magen-Darm-Trakt nach oraler Applikation. Allgemeinmedizin 1990, 19: 132-137.
*Udani J.K., Singh B.B., Singh V.J., Sandoval E. BounceBack™ capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study. Journal of the International Society of Sports Nutrition 2009, 6:14-20.
*Walker A.F., Bundy R., Hicks S.M., Middleton R.W. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine, 2002, 9(8):681-686.
*Yoshioka S., Izutsa К., Asa Y., Takeda Y., Inactivation kineticsof enzyme pharmaceuticals in aqueous solutions, Pharmaceutical Research, 1991, 4, 480–485.
8510
правок

Навигация