Спорт-вики — википедия научного бодибилдинга

Гипераммониемия при физических нагрузках — различия между версиями

Материал из SportWiki энциклопедии
Перейти к: навигация, поиск
(Новая страница: «== Гипераммониемия при физических нагрузках == === Накопление продуктов азотистого обмена…»)
(нет различий)

Версия 12:12, 30 июня 2020

Гипераммониемия при физических нагрузках

Накопление продуктов азотистого обмена в процессе интенсивных и продолжительных тренировок

Проблема нарастающего накопления продуктов азотистого обмена (ПАО) в крови, мозге и мышцах в процессе больших физических нагрузок является предметом пристального внимания еще с начала 1960-х годов. Аккумуляция аммиака рассматривается в качестве одной из существенных причин усталости нейрогенного происхождения в спорте[1][2][3]. Эти биохимические изменения сочетаются с такими факторами развития утомления как накопление лактата, снижение рН и дисбаланс электролитов. Согласно «аммониевой теории развития усталости»[4], избыточный аммиак, образующийся в организме в процессе жизнедеятельности, должен максимально быстро быть удален, поскольку является естественным «отходом» обмена веществ. Усталость – синоним широкого спектра хорошо известных физиологических проявлений в спорте высших достижений и обычного высокоинтенсивного тренировочного процесса, в основе которых лежат следующие механизмы[4]:

  • Накопление периферических токсинов/метаболических субпродуктов;
  • Центральная (нейрогенная) саморегуляция – адаптивная защитная реакция;
  • Продукция воспалительных цитокинов;
  • Нарушение нейромедиаторных механизмов;
  • Периферический регуляторный контроль управления метаболизмом органов и тканей.

Идея о том, что накопление аммиака играет значительную роль в развитии усталости, далеко не нова, и берет свое начало с 20-х годов прошлого столетия – установления факта образования аммиака из аденозинмонофосфата (АМФ) в мышцах при интенсивной стимуляции мышечных сокращений[5]. Последующие работы выявили очень важную в теоретическом и практическом плане зависимость уровня накопления аммиака в плазме крови от интенсивности физической нагрузки: минимальные изменения концентрации при интенсивности ниже 50-60% VO2, но быстрое нарастание концентраций при увеличении нагрузок, особенно, на уровне истощения[6][7]. Однако, не только интенсивность, но и продолжительность физической нагрузки определяет нарастание концентрации аммиака. Продолжительные (более 1 часа) субмаксимальные тренировки (60–75% VO2max) способствуют накоплению аммиака за счет разрушения ВСАА в мышцах для получения дополнительной энергии[8][9]. Серия исследований лаборатории E.W.Banister и его сотрудников[2][10][11] доказала прямую зависимость физической нагрузки, развития усталости и накопления азотистых продуктов метаболизма на периферии и в ЦНС. Высокие концентрации аммиака повышают скорость наступления усталости, риск развития мышечных судорог, снижают сократительную способность скелетных мышц, замедляют восстановление после нагрузки.

Роль ВСАА в накоплении продуктов азотистого обмена в процессе интенсивных и продолжительных тренировок

Рис.1. Метаболизм незаменимых аминокислот с разветвленной цепью (ВСАА: лейцин, изолейцин и валин) в митохондриях клеток скелетных мышц. ВСКDH – ферментный комплекс, ограничивающий данное направление. ВСАА обеспечивает дополнительную энергию через цикл трикарбоновых кислот (ТСА), но в то же время, является дополнительным источником образования «отходов» - аммиака. AАТ – аланин-аминотрнасфераза (контролирует конверсию пирувата в аланин); ВСАТ – аминотрансфераза ВСАА; ВСКА – кето-форма ВСАА (без аминогруппы); СоА-SH – редуцированная форма коэнзима А; GDH – глутамат-дегидрогеназа (контролирует конверсию глутамата до аммиака). Из D.J.Wilkinson и соавт. (2010).

Давно известно, что BCAA в процессе продолжительных тренировок может обеспечивать до 10% общей расходуемой спортсменом энергии[12]. Длинно-цепочечные незаменимые аминокислоты с разветвленной цепью – ВСАА – лейцин, изолейцин и валин, - составляют примерно 40% незаменимых аминокислот (ЕАА), поступающих с пищей, и играют важную роль в структуре глобулярных и мембранных протеинов, особенно в мышечной ткани[13](см. обзор «BCAA в спортивной медицине»). В митохондриях скелетных мышц ВСАА подвергаются метаболическим изменениям за счет двух ферментов (рис.1): 1) аминотрансферазы АК с разветвленной цепью (ВСАТ) и 2) дегидрогеназы альфа-кето-АК с разветвленной цепью (ВСКDH). В результате образуются соединения с коэнзимом А, которые могут утилизироваться в цикле трикарбоновых кислот (ТСА) для получения энергии в процессе окисления[14][15].

Под влиянием ВСАТ от ВСАА отщепляется аминогруппа, которая взаимодействует с 2-оксоглутаратом, образуя глутамат, а ВСАА превращаются в кето-форму (ВСКА), лишенную азота. Все эти реакции до определенного этапа сопровождаются минимальным образованием аммиака (минимальное деаминирование ВСАА), который является естественным метаболитом – участником нормальных биохимических реакций в тренировочном и соревновательном процессе. Но, с нарастанием интенсивности мышечных движений и их продолжительности, биохимические реакции сдвигаются в сторону избыточного образования аммиака.

Патогенетические механизмы гипераммониемии заключаются в следующем:

  • Ткань мозга, лишенная (в отличие от печени) биохимического цикла утилизации мочевины, получает аммиак из циркулирующей крови после его прохождения через ГЭБ;
  • Первичным звеном взаимодействия с аммиаком в мозгу являются астроциты, которые защищают нейроны и выполняют вспомогательную функцию в передаче нервных импульсов и метаболизме нейронов;
  • Обычные концентрации аммиака играют положительную метаболическую роль в мозгу, обеспечивая функционирование, в частности, ГАМК-ергической системы;
  • Превышение определенных концентраций аммиака в мозгу ведет к нарушению функции астроцитов и нейронов;
  • В условиях повышенных пролонгированных физических нагрузок установлена положительная корреляция между возрастанием концентрации аммиака в крови и в мозге[16];
  • Повышенная концентрация аммиака в астроцитах ведет к их отеку, функциональным и морфологическим изменениям. Нарушается функция митохондрий и их чувствительность к реактивным окислительным субстанциям;
  • Снижается межнейрональная передача;
  • Нарушаются процессы обучения и памяти (гипераммониемия нарушает функционирование соответствующих структур мозга), фокусировка внимания, снижается реакция на большинство видов стимуляции;
  • Ослабляется регулирование моторных функций (нарушение глутаматергической передачи).

Аммониевый порог (ammonia threshold) – уровень физической нагрузки (определяемый, как правило, в лабораторных условиях), при котором в плазме крови появляется аммоний с последующим градуальным нарастанием его концентраций в соответствии с возрастающей нагрузкой. Примером определения аммониевого порога (АТ) может служить типичное исследование C.Yges и соавторов[17] с участием 26 тренированных спортсменов, выполняющих тесты на беговой дорожке субмаксимальной и максимальной интенсивности, а также «полевой» тест, который включал три различных скоростных режима. В процессе субмаксимального теста АТ был определен у 23 (88,5%) испытуемых по анализу образцов крови из пальца, который показывал содержание аммиака и лактата. Важным результатом было совпадение аммониевого и лактатного порогов у большинства испытуемых, которые в целом коррелируют между собой. Однако при увеличении продолжительности и интенсивности нагрузок, содержание аммиака в крови прогрессивно нарастало, в то время как уровень лактата оставался достаточно стабильным (не менее 4 ммол/л). Целый ряд аналогичных работ показал, что АТ является адекватным показателем уровней физической нагрузки при тренировках высокой интенсивности и продолжительности, и должен использоваться в практической деятельности спортивных врачей и тренеров, наряду с оценкой накопления лактата.

Клинические исследования гипераммониемии у спортсменов высшей квалификации

Рис.2. Дизайн исследования метаболического ответа у элитных каноистов на интенсивную тренировочную сессию в процессе подготовки к выступлениям. По оси абсцисс – время в мин. от начала тренировки. Объяснения в тексте. Из W.S.Coelho и соавт. (2016).

В работе W.S.Coelho и соавторов[18] исследовался метаболический ответ у элитных каноистов (участников мировых чемпионатов, Олимпийских и Панамериканских Игр) в ходе комбинированной тренировочной сессии. В ходе исследования спортсмены поддерживали обычный режим гидратации и потребления пищи. Для оценки физического статуса фиксировались антропометрические данные и лабораторные данные биохимии и клеточного состава крови. Тренировочный протокол (рис.2) состоял из нескольких спринтерских заездов на различных дистанциях и интенсивностях с трехминутными интервалами между ними. Общая протяженности дистанции – 16 км (на рис.2 – от Т1 до Т2). Эта часть протокола продолжалась 210 мин с последующим 20-минутным отдыхом (Т2-Т3), во время которого участники выпивали 500 мл напитка (20% углеводов, 2% липидов, 5% протеинов (whey-протеин+казеин). С 230 минуты по 280 минуту проводилась силовая тренировка (подъем тяжестей) для больших верхних и нижних мышечных групп, затем – 70-минутный отдых. В процессе исследования установлено: значительное повышение аспартат аминотрансферазы (AST, на 30% в ходе тренировки, и до 40% после нее), миоглобина (на 170%), показателей мышечных повреждений (на 160-170%), лейкоцитов (42-60%) за счет преимущественно, нейтрофилов (до 166%), тромбоцитов (на 30%). Чрезвычайно показательным было изменение концентрации в плазме крови ВСАА (рис.3).

Рис.3. Изменение концентрации ВСАА и ароматических АК в плазме крови элитных каноистов (ось ординат, в % от контроля) в процессе тренировочной сессии. Графики А: черные кружки – лейцин, белые квадраты – изолейцин, черные треугольники – валин. Графики В: черные кружки – фенилаланин, черные треугольники – триптофан. Остальные объяснения в тексте и на рис.2.

Как видно из рис.3, концентрации ВСАА – важнейшего «топливного» и метаболического (для синтеза протеинов) субстрата, снижаются сразу же под воздействием обоих видов физической нагрузки. Особенно заметным было снижение лейцина (до 50%) во время гребного спринта, а также во время силовых тренировок (до 22%). Выявленное снижение продолжалось и в период отдыха. Содержание ароматических АК прогрессивно снижалось на 15-20% во время нагрузки, с тенденцией быстрого восстановления во время отдыха. Очень динамичным и показательным было изменение уровня аммиака в процессе тренировочного цикла (рис.4, график А).

Рис.4. Изменение концентрации нитрогенных веществ в плазме крови элитных каноистов (ось ординат, в % от контроля) в процессе тренировочной сессии. Графики А: черные кружки – аммиак, белые кружки – мочевая кислота. Графики В: черные кружки – мочевина, белые треугольники – креатинин. Остальные объяснения в тексте и на рис.2 и 3.

Отчетливо видно нарастание концентрации аммиака в крови по мере прохождения дистанции (до 80% к концу серии спринтов) и завершения силовых упражнений (до 70% к концу нагрузочного периода). Эти изменения носили гораздо более динамичный характер по сравнению с изменениями концентрации других нитрогенных веществ (мочевины, мочевой кислоты, креатинина). И, что не менее важно, высокие концентрации аммиака, в отличие от других показателей, сохранялись и после окончания всего тренировочного цикла.

В работе S.R.Camerino и соавторов[19] показано увеличение аммиака на 70% в плазме крови в течение 2-х часового интенсивного непрерывного тренинга при максимальной нагрузке на велотренажере у велосипедистов. В исследовании E.S.Prado и соавторов (2011) в процессе 2-х часового теста на велотренажере уровень аммониемии достигал 35% от исходных значений (на 30-ой минуте – более 20%, с 60-ой по 120-ую минуты – 30-35%) с последующим резким снижением к 150-180 минутам (30-60 минут периода отдыха после нагрузки). Параллельно в те же временные периоды нарастала концентрация мочевины (до 30-35%), но без снижения после окончания нагрузки.

Читайте также

Источники

  1. Lowenstein J.M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol.Rev., 1972, 52:382-414.
  2. 2,0 2,1 Much B.J.C., Banister E.W. Ammonia metabolism in exercise and fatigue; a review. Med.Sci.Sports Exerc., 1983, 15(1):41-50.
  3. Brouns F., Beckers E., Wagenmakers A.J.M., Saris W.H.M. Ammonia accumulation during highly intensive long-lasting cycling: individual observations. Int.J.Sports Med., 1990, 11(Suppl.2): S78-S84.
  4. 4,0 4,1 Wilkinson D.J., Smeeton N.J., Watt P.W. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog.Neurobiol., 2010, 91(3):200-219.
  5. Parnas J.K. Ammonia formation in muscle and its source. Am.J.Physiol., 1929. 90, 467.
  6. Babij P., Matthews S., Rennie M. 1983. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man. Eur.J Appl.Physiol., 1983, 50: 405–411.
  7. Buono M.J., Clancy T.R., Cook J.R. Blood lactate and ammonium ion accumulation during graded exercise in humans. J. Appl. Physiol., 1984, 57, 135–139.
  8. Wagenmakers A.J., Coakley J.H., Edwards R.H., 1990. Metabolism of branchedchain amino acids and ammonia during exercise: clues from McArdle’s disease. Int.J.Sports Med., 1990, 11 (Suppl. 2): S101– S113.
  9. van Hall G., van der Vusse G.J., Soderlund K., Wagenmakers A.J. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J. Physiol., 1995, 489 (Pt 1), 251–261.
  10. Banister E.W., Rajendra W., Mutch B.J.C. Ammonia as an indicator of exercise stress: Implication of recent findings to sports medicine. Sports Med., 1985, 2, 34–46.
  11. Banister E.W., Cameron B.J.C. Exercise-induced hyperammonaemia: peripheral and central effects. Int. J. Sports Med., 1990, 11, S129–S142.
  12. Brookes G.A. Amino acid and protein metabolism during exercise and recovery. Med.Sci.Sports Exercise, 1987, 19, S150–S156.
  13. Brosnan J.T., Brosnan M.E. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr., 2006, 136, 207S–211.
  14. Shimomura Y., Honda T., Shiraki M. et al. Branched-chain amino acid catabolism in exercise and liver disease. J.Nutr., 2006, 136: 250S–253.
  15. Shimomura Y., Murakami T., Nakai N. et al. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J.Nutr., 2004, 134: 1583S–1587S.
  16. Nybo L., Dalsgaard M.K., Steensberg A. et al. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J.Physiol., 2005, 563: 285–290.
  17. Yges C., Urena R., Leon C. et al. Blood ammonia response during incremental and steady-state exercise in military staff. Aviat.Space Environ.Med., 1999, 70(10):1007-1011.
  18. Coelho W.S., de Castro L.V., Deane E. et al. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach. Nutrients, 2016, 8:719-736.
  19. Camerino S.R., Lima R.C., Franca T.C. et al. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct., 2016, 7(2):872-880.