Спорт-вики — википедия научного бодибилдинга
NEWS:

Материал из SportWiki энциклопедия
Перейти к: навигация, поиск

Содержание

Донаторы оксида азота в спортивной медицине[править]

Авторы: д.м.н. А.В. Дмитриев, врач-эндокринолог А.А. Калинчев

Окись азота – жирорастворимое соединение, которое образуется в процессе метаболизма в различных органах и тканях. Основной массив данных по эндогенному образованию и биологическому значению окиси азота выполнены в 80-х годах прошлого столетия. Первоначально NO была идентифицирована как сигнальная молекула в организме животных. Затем выделен специфический фермент синтаза окиси азота (nitric oxide synthase - NOS), катализирующий комплексную энзиматическую реакцию, ведущую к образованию NO из субстратов - L-аргинина и молекулярного кислорода. Позднее был выявлен альтернативный путь образования NO за счет простой редукции нитратов и нитритов. Весь последующий период шло интенсивное изучение биологической роли NO, и в настоящее время оксид азота рассматривается как важный фактор регуляции (медиатор) норадренергической и нехолинергической нервной передачи. В спортивной нутрициологии пищевые добавки, способные повышать выработку оксида азота, рассматриваются как эргогенные вещества (A.Petroczi, D.P.Naughton, 2010; R.Bescos и соавт., 2012). Для такого утверждения имеется ряд научных обоснований. Во-первых, в экспериментальных условиях показана роль NO в регуляции кровотока и митохондриального дыхания при физической нагрузке (W.Shen и соавт., 1994), а усиление кровотока в активных тканях за счет действия NO вызывает ускоренное восстановление (R.J.Bloomer, 2010). Во-вторых, у хорошо подготовленных спортсменов предтренировочное назначение пищевых добавок, содержащих такие стимуляторы образования NO как L-аргинин и L-цитруллин, улучшает физическую готовность (R.J.Bloomer и соавт., 2010), что прямо увязывается с возрастанием концентрации нитратов и нитритов крови и насыщением мышц кислородом. Дополнительно в последние несколько лет получены положительные результаты влияния растительных донаторов оксида азота на физическую форму лиц, ведущих активный образ жизни (свекольный сок и концентрат, сок красного шпината и концентрат). С 2016 года Международное Общество Спортивного Питания (ISSN) внесло предложение включить темный шоколад в группу донаторов оксида азота.

Известны пять классических оксидов азота — закись азота N2O («веселящий» газ, к теме обзора отношения не имеет), окись азота NO, оксид азота(III) N2O3, диоксид азота NO2 и оксид азота (V) N2O5. Пищевые добавки (БАДы), способствующие выработке в организме оксида азота подразделяются на прямые и непрямые донаторы NO: непрямые – аргинин и цитруллин; прямые – нитрат натрия, экстракты и соки растительного происхождения – свеклы и амаранта, эпикатехин (флаванол, содержащийся в какао-бобах) и некоторые другие. Роль NO в биохимических процессах в организме изучена достаточно подробно и кратко может быть сведена к нескольким основным механизмам: расслабление гладкой мускулатуры сосудистой стенки и усиление кровотока; стимуляция межнейрональной передачи в мозге и когнитивных функций; торможение агрегации и адгезии тромбоцитов – улучшение микроциркуляции; повышение сократительной активности миокарда; стимуляция и оптимизация митохондриальных энергетических процессов.

Непрямые донаторы оксида азота[править]

К непрямым донаторам оксида азота относятся L-аргинин и L-цитруллин.

L-Аргинин[править]

Рис.1. Метаболические пути синтеза NO в организме человека. NADPH – никотинамид аденин динуклеотид фосфат-оксидаза; NO – окись азота; NOS – NO-синтаза. L-аргинин может как поступать экзогенно, так и образовываться из L-цитруллина (оба – непрямые донаторы NO). Далее, взаимодействуя с молекулярным кислородом под влиянием синтазы окиси азота L-аргинин образует NO. Прямые донаторы оксида азота поступают с пищей, абсорбируются в кровь, повышая концентрацию нитратов и нитритов – источников NO. Из обзора R.Bescos и соавторов (2012).

Механизм действия L-аргинина является NOS-зависимым и схематично представлен на рис.1. Он может как поступать с пищей (основной путь), так и образовываться в организме в почках из L-цитруллина. L-аргинин – условно незаменимая аминокислота, участвующая в синтезе белка наравне с другими аминокислотами. Суточная потребность в ней составляет 4-5 грамм. Средние значения в плазме крови составляют 70-115 мкмол/л.

Фармакокинетика L-аргинина и L-цитруллина[править]

Подробное исследование фармакокинетики L-аргинина при пероральном введении в различных дозах (O.Tangphao и соавт.,1999; R.W.Evans и соавт.,2004; B.Campbell и соавт.,2006; T.S.Alvares и соавт.,2012; F.Mariotti и соавт.,2013) позволило сделать следующие выводы:

  • Диапазон базовых значений концентрации L-аргинина (до его экзогенного введения) в плазме крови составляет от 70 до 125 мкмол/л.
  • При введении разовой пероральной дозы L-аргинина 6 г. концентрация L-аргинина плазмы достоверно возрастает до 210 мкмол/л к 30-ой минуте после перорального введения этой аминокислоты и сохраняется на этом уровне с 60-ой по 120 минуту. Разовая доза 10 г. повышает концентрацию L-аргинина в плазме на 60-ой минуте до 300 мкмол/л с последующим постепенным снижением до исходных значений в течение 8-и часов. При любом количестве L-аргинина при однократном введении (1-10 г) его концентрация в плазме растет быстро и достигает максимальных значений в интервале от 1 до 1,5 часов.
  • Длительное (неделя, прием три раза в день) применение L-аргинина в суточных дозах 3 г. (1 г х 3 раза в день), 9 г (3 г х 3), 21 г (7 г. х 3) и 30 г (10 г х 3) в дополнение к ежедневной трехразовой стандартной диете выявило тенденцию к увеличению концентрации L-аргинина в плазме на 10% (статистически недостоверно), достоверное значительное (на 70%) возрастание концентрации L-аргинина в дозе 9 г/сутки, и отсутствие дальнейшего увеличения этого показателя в дозах 21-30 г/сутки. Таким образом, доза L-аргинина 9 г/сутки считается оптимальной, при которой также отсутствуют какие-либо побочные эффекты. Имеется прямая корреляционная связь (сохраняется только в диапазоне доз 4-10 г) между дозой перорально назначаемого L-аргинина при недельном применении (независимо от лекарственной формы аминокислоты – обычной или ретардной) и последующим возрастанием концентрации аминокислоты в крови: доза 4 г – увеличение до 140 мкмол/л; доза 6 г – до 210 мкмол/л; доза 10 г – до 300 мкмол/л.

Фармакокинетика L-цитруллина при экзогенном введении в течение курсового 7-дневного приема была изучена в прямом сравнении с кинетикой L-аргинина, учитывая их метаболическую связь, в работе E.Schwedhelm и соавторов (2008). В двойном-слепом рандомизированном плацебо-контролируемом перекрестном исследовании у 20 здоровых добровольцев изучили шесть разных режимов дозирования с использованием плацебо, аргинина и цитруллина. Основные фармакокинетические параметры (Cmax, Tmax, Cmin, AUC) рассчитывались после недельного перорального приема пищевых добавок. Фармакодинамические эффекты оценивались по следующим показателям: соотношение L-аргинина в плазме к ассиметричному диметиларгинину – эндогенному ингибитору синтазы окиси азота (NOS) - (аргинин/ADMA соотношение); циклический гуанозин монофосфат (cGMP); скорость экскреции нитрата; флоу-вазодилятация (FMD). L-цитруллин дозо-зависимо увеличивал площадь под кривой «время-концентрация» и Cmax L-аргинина в плазме крови, причем более эффективно, чем сам L-аргинин при приеме внутрь (P < 0.01). Наибольшая доза L-цитруллина (3 г однократно) увеличивала Cmin L-аргинина в плазме и улучшала соотношение L-аргинин/ADMA с 186 ± 8 (исходное значение) до 278 ± 14 (P < 0.01). Более того, нитраты в моче и cGMP возрастали примерно на 30%. Эти данные показывают, что пероральный прием L-цитруллина дозо-зависимо увеличивает концентрацию L-аргинина в плазме крови и повышает сигнальную роль NO. Детали фармакокинетики L-цитруллина и L-аргинина при 7-дневном приеме представлены в таблице 1.

Таблица 1. Кинетические параметры L-цитруллина и L-аргинина в плазме крови 20 здоровых добровольцев после 7-дневного перорального применения. Cmax – максимальная концентрация в плазме (мкмол/л); Тmax – время достижения Сmax (часы); Сmin – минимальная концентрация в плазме (мкмол/л); AUC – площадь под кривой «время-концентрация» (мкмол/час). Аргинин SR – форма с замедленным высвобождением; аргинин IR – форма с быстрым высвобождением. А – кинетика аргинина в плазме после 7 дней приема либо цитруллина, либо аргинина: * - Р<0,01 по сравнению с аргинином SR, + - Р<0,01 по сравнению с аргинином IR, # - Р=0,03 по сравнению с аргинином IR. В – кинетика цитруллина в плазме после 7 дней приема либо цитруллина, либо аргинина: * - Р<0,01 по сравнению с цитруллином 750 мг, + - Р<0,01 по сравнению с цитруллином 1500 мг (E.Schwedhelm и соавторы (2008).

Вещество Cmax мкмол/л Tmax (часы) Cmin мкмол/л AUC мкмол/час Доза мг
Цитруллин 750 54±5 2,3±0,7 19±4 271±38
Цитруллин 1500 79±8* 1,6±0,3 21±4 421±65*
Цитруллин 3000 149±42*+ 1,4±0,1 45±5*+ 898±67*+
Аргинин SR 1600 49±6 3,7±1,3# 19±4 289±50
Аргинин IR 1000 84±9 0,7±0,1 10±3 283±51
Цитруллин 750 163±14 0,7±0,1 9±2 288±35
Цитруллин 1500 350±38* 0,8±0,1 6±1 566±47*
Цитруллин 3000 864±45*+ 0,7±0,1 9±2 1486±78*+

Метаболические эффекты L-аргинина в спорте[править]

L-аргинин, помимо образования NO, участвует и в других метаболических процессах (цикл мочевины, стимуляция выделения инсулина, глюкагона, гормона роста, пролактина и катехоламинов). Это также может иметь значение в комплексном влиянии этой аминокислоты на организм спортсменов.

Эргогенные свойства изолированного применения L-аргинина были изучены в нескольких работах (O.Fricke и соавт., 2008; K.Koppo и соавт., 2009; R.A.Olek и соавт., 2010). Эти исследования были чрезвычайно разноплановыми, включали совершенно разные группы лиц (преимущественно нетренированных), поэтому сделать какие-либо выводы не представлялось возможным. Другая группа работ была выполнена уже в специализированных спортивных сообществах: дзю-до (T.H.Liu и соавт., 2008; P.H.Tsai и соавт., 2009), теннис (R.Besco?s и соавт., 2009), велосипедный спорт (K.L.Sunderland и соавт., 2011). Несмотря на широкий диапазон применяемых доз (от 6 до 12 г в день) и разную длительность назначения (от 1 дня до 28 дней) ни в одной группе не отмечено положительных сдвигов в физической подготовке спортсменов (не было изменений физической силы и мощности, положительных сдвигов биохимии крови и т.п.). Более того, не отмечено и изменения содержания нитритов и нитратов в плазме крови.

Исходя из отрицательных результатов изолированного применения L-аргинина в спорте, исследовано его влияние на показатели физической готовности в комбинации с другими нутриентами. Эти результаты оказались более обнадеживающими, причем как в отношении нетренированных, так и тренированных лиц. S.J.Bailey и соавторы (2010b) показали, что L-аргинин в дозе 6 г 3 раза в день в комбинации с другими аминокислотами и витаминами вызывает снижение VO2 при низких и средних по интенсивности циклах упражнений (6 минут при уровне 82–14 W), и увеличивает время работы до отказа (L-аргинин - 707 – 232 сек., плацебо - 562 – 145 сек., Р < 0.05) в процессе теста на велотренажере (A.Vanhatalo и соавт., 2010). C.L.Camic и соавторы (2010) выявили повышение мощности на 5,4% во время велоэргометрического теста на истощение при курсовом 28-дневном использовании дозы L-аргинина 3 г в сочетании с экстрактом зерен винограда. В то же время, указанные положительные сдвиги пока никак не могут быть объяснены с научной точки зрения, поскольку нет корреляции между ними и изменениями показателей NO, дилатацией сосудов и другими характерными для NO эффектами в организме. Более того, имеются четкие данные, что высокие дозы аргинина (более 10 г) неэффективны в увеличении кровотока у здорового человека (M.R.Adams и соавт., 1995; J.P.Chin-Dusting и соавт., 1996). В.Campbell и соавторы (2006) показали достоверное повышение количества отжиманий в положении лежа и пика мощности в процессе 30-секундного Wingate-теста после пищевых добавок L-аргинина в дозе 6 г/день в течение 56 дней в комбинации с альфа-кетоглутаратом. B.N.Buford и A.J.Koch (2004), а также B.R.Stevens и соавторы (2000), показали, что однократный прием L-аргинина в дозе 6 г в форме альфа-кетоизокапроата увеличивает среднюю мощность выполнения 10-секундного Wingate-теста. На хорошо тренированных спортсменах проведено два исследования L-аргинина в комбинации с аспартатом. Первое исследование - бегуны на длинные дистанции - марафон (доза 15 г/день в течение 14 дней подготовительного периода – Р.С.Colombani и соавт., 1999). Установлено, что уровни в плазме соматотропного гормона (STH), глюкагона, мочевины и аргинина достоверно повышались, а уровни аминокислот – снижались после марафонского бега под влиянием предварительного курсового применения аргинина, что позволило авторам сделать вывод о неэффективности пищевых добавок L-аргинина. Такой же вывод получен и в работе Т.Abel и соавторов (2005), но уже в группе хорошо тренированных велосипедистов при использовании сочетания аргинина и аспартата в высоких (5,7 г L-аргинина и 8,7 г аспартата) и низких (2,8 г L-аргинина и 2,2 г аспартата) дозах и курсовом назначении в течение 28 дней.

Подводя итог исследованиям L-аргинина и его комбинаций с другими пищевыми добавками в спорте, R.Bescos и соавторы (2012b) делают совершенно справедливое заключение: «Существующие в настоящее время доказательства влияния L-аргинина на физическую готовность касаются, в основном, комбинированного использования этой аминокислоты. Эти сочетания оказывают определенное положительное влияние на нетренированных или умеренно тренированных лиц, улучшая переносимость аэробных и анаэробных физических нагрузок. Однако, в этих работах нет четко установленной взаимосвязи между пищевыми добавками L-аргинина и уровнем синтеза NO, а положительное влияние на физическую форму, обнаруженное в некоторых исследованиях, может быть обусловлено другими компонентами сложных составов. Кроме того, это может и не иметь отношения к образованию и действию NO, а осуществляться иными метаболическими путями. Данные о положительном влиянии L-аргинина на хорошо тренированных спортсменов отсутствуют. Исследования последних лет острого (однократного) или хронического (курсового) приема L-аргинина не позволяют дать однозначного ответа на вопрос об эффективности этой аминокислоты в повышении физических кондиций спортсменов».

В то же время, данные последних двух лет показали потенциальную перспективность комбинированного применения креатина и нитратов в виде креатина нитрата (первые результаты его применения в спорте рассматривается подробно в обзоре, посвященному креатину).

Другие формы L-аргинина[править]

Одной из новейших форм L-аргинина является инозитол-стабилизированный силикат аргинина - ИССА (коммерческое название «Нитросигин» Nitrosigine®). Направленное создание такой формы L-аргинина обусловлено поиском более эффективного способа повышения концентрации аргинина в плазме крови по сравнению с использованием аминокислоты в чистом виде (S.D.Proctor и соавт., 2007). Кроме того, соединения кремния сами активно участвуют в повышении адаптивных функций организма. D.Kalman и соавторы (2015) провели комплексное изучение безопасности, фармакокинетики и фармакодинамики ИССА в дозе 500 мг/день (капсулы)у здоровых взрослых мужчин (n=10, 26,7±5,4 года) в течение 14 дней. Тестирование осуществлялось в первый и в 14-ый дни. Образцы слюны и крови отбирались до приема ИССА, а также через 30 минут, 1 час, 1,5 часа, 2 часа, 3 часа, 4 часа, 5 часов и 6 часов после приема ИССА. Анализировались такие показатели в плазме крови как аргинин и силикат, а в слюне – оксид азота + нитриты. Графики изменения концентрации указанных параметров приведены на рис.2 и 3. Исходные значения показателей в первый день составили: Cmax (максимальная концентрация в сыворотке) аргинина 30,06±7,80 мкг/мл, Tmax (время достижения Cmax) – 1,13±0,52 часа, а Т? (время полужизни) – 15,93±9,55 часа; для кремния Cmax – 2,99±0,63 мкг/мл, Tmax – 2,44±2,05 часа и Т? - 34,56±16,56 часа. После приема ИССА в первый день показатели уровня аргинина в плазме возрастали уже после 30 минут, продолжали быть повышенными в течение последующих часов (P=0,01), а показатели кремния возрастали через час и сохранялись повышенными 1,5 часа (P=0,05). На 14-ый день прием ИССА приводил к увеличению уровня аргинина в течение 1,5 часа, а кремния – в течение 3-х часов. Умеренное увеличение содержания NO в слюне (определялось по содержанию нитратов) отмечалось как в первый, так и в 14-ый день приема ИССА.

Рис.2. Изменение концентрации L-аргинина (мкг/мл, ось ординат) в плазме крови мужчин в течение 6-и часов наблюдения после приема ИССА в дозе 500 мг (ось абсцисс, от 0 до 6) во время двух визитов (зеленая и синяя линии)
Рис.3. Изменение концентрации кремния (мкг/мл, ось ординат) в плазме крови мужчин в течение 6-и часов наблюдения после приема ИССА в дозе 500 мг (ось абсцисс, от 0 до 6) во время двух визитов (зеленая и синяя линии)

Фармакокинетические исследования показали, что ИССА хорошо абсорбируется в кишечнике, концентрация нарастает уже через 30 минут, достигает пика примерно через час и сохраняется в пределах предполагаемой терапевтической эффективности около 5 часов. Особенности фармакокинетики одиночной дозы ИССА сохраняются в течение 14-дневного применения. Никаких побочных эффектов в течение 2-х недель не выявлено, что говорит о безопасности применения ИССА. S.Rood-Ojalvo и соавторы (2015) в двойном-слепом плацебо-контролируемом перекрестном исследовании у здоровых взрослых людей (n=16) показали, что прием ИССА в дозе 1500 мг перед интенсивной тренировкой снижает уровень биомаркеров мышечных повреждений, увеличивает кровоток в мышцах, предупреждает развитие отечности после тренировки, снижает лактат крови, увеличивает синтез креатин-фосфата мышц и ускоряет восстановление. В работе P.Harvey и соавторов (2015) показано увеличение кровотока в мозговой ткани под влиянием ИССА, улучшение когнитивных функций и замедление процесса их нарушения в процессе физического утомления.

Метаболические эффекты L-цитруллина в спорте[править]

Эта аминокислота может поступать с пищей (в том числе, в качестве пищевых добавок в составе многих комплексных смесей для спортивного питания), а также синтезироваться в организме двумя основными путями: из глутамина в энтероцитах (конденсация орнитина и карбамил-фосфата в реакции, катализируемой орнитин-карбамил-трансферазой); в процессе конверсии в тканях L-аргинина до NO в реакции, катализируемой NOS-ферментами. Среднее значение концентрации L-цитруллина в сыворотке крови у обычных людей составляет 25 мкмол/л, однако у спортсменов этот показатель может снижаться до 10-15 мкмол/л (профессиональные велосипедисты, A.Sureda и соавт., 2009). Интерес к L-цитруллину, несмотря на наличие L-аргинина (в который он на 80% превращается в почках), обусловлен тем, что он, во-первых, минует печеночный метаболизм, а, во-вторых, не является субстратом для действия фермента аргиназы (как аргинин), что, как предполагается, делает его более устойчивым в организме. Изолированное применение L-цитруллина имело место только в одном исследовании (R.C.Hickner и соавт., 2006). Работа выполнена с использованием теста на беговой дорожке (бег до отказа) у молодых здоровых субъектов. Вопреки ожиданиям авторов, результат был парадоксальным – ухудшение показателей физической готовности по сравнению с плацебо. Было предложено следующее объяснение: L-цитруллин снижает секрецию инсулина поджелудочной железой или усиливает экскрецию инсулина, поскольку параллельно достоверно (L-цитруллин vs плацебо) снижалась концентрация этого гормона в крови. Пониженными в плазме оказались и маркеры NO (нитриты/нитраты).

Большинство остальных работ касаются, как и в случае L-аргинина, действия комбинаций этой аминокислоты с другими нутриентами. Так, использовалось сочетание L-цитруллина с малатом, который, как известно, участвует в цикле трикарбоновых кислот (ТСА). Первая работа этого плана (D.Bendahan и соавт., 2002) была расценена специалистами как очень слабая с уровнем доказательности не более «D». Хотя результаты были получены очень хорошие (34% увеличение продукции АТФ, 20% рост восстановления креатинфосфата в мышцах в процессе отдыха после нагрузки при приеме L-цитруллин+малат 6 г/день в течение 16 дней), отсутствие в работе соблюдения принципов доказательной медицины (без плацебо и слепого контроля) не позволило принимать результаты всерьез. Две последующие работы с добавлением малата выполнялись уже на более высоком уровне. В группе хорошо тренированных велосипедистов, которые предварительно (за 2 часа до начала) принимали 6 грамм комбинации цитруллина и малата, выявлено повышение в плазме метаболитов NO после велосипедных соревнований (A.Sureda и соавт., 2009; 2010). Кроме того, увеличивалась биодоступность L-аргинина (A.Sureda и соавт., 2009). В другой работе (J.Perez-Guisado, P.M.Jakeman, 2010) показано, что однократная доза L-цитруллина с малатом (8 г) увеличивает работоспособность в среднем на 19%, что определялось по возрастанию количества повторяющихся упражнений для брюшного пресса до истощения. Однако эти положительные сдвиги авторы не могли связать с увеличением доставки NO, поскольку маркеры NO в данной работе не определялись. Таким образом, сегодня нет достаточных оснований для объяснения взаимосвязи эффектов L-цитруллина с возрастанием NO в крови. Улучшение физической готовности под влиянием комбинации L-цитруллина с малатом может объясняться взаимодействием этих молекул с другими метаболическими путями, не опосредованными системой NO. Например, повышением уровня креатина через стимуляцию синтеза L-аргинина. Уже давно показано, что пищевые добавки аргинина могут увеличивать концентрацию внутримышечного креатина (M.L.Minuskin и соавт., 1981). Подводя итог исследованиям L-цитруллина и его комбинаций с другими пищевыми добавками в спорте, R.Bescos и соавторы (2012b) сделали следующее заключение: изолированное применение L-цитруллина неэффективно в повышении физической формы тренирующихся лиц; включение в пищевые добавки к L-цитруллину малата может повышать уровень NO-метаболитов, однако этот механизм не ведет к значимому повышению физической формы спортсменов.

Прямые донаторы оксида азота[править]

К прямым донаторам оксида азота относятся нитрат натрия, растительные БАДы – соки и экстракты свеклы и амаранта, эпикатехин (флаванол, содержащийся в какао-бобах). Эту группу еще иначе называют NOS-независимые донаторы оксида азота, поскольку их действие не зависит от фермента синтазы окиси азота.

Изучение эргогенных эффектов нитрата натрия[править]

Первое исследование нитрата натрия выполнено F.J.Larsen и соавторами в 2007 году. Они показали, что прием этого соединения (0,1 ммол/кг веса в течение 3-х дней) снижает VO2 (~160 мл/мин) при интенсивности физической работы на уровне 40–80% от пика VO2 на велоэргометре. Перекрестная эффективность, определяемая как соотношение выполненной механической работы к затратам энергии, также повышалась на 0,4%. Это действие не сопровождалось изменениями других кардио-респираторных параметров (вентиляции, продукции углекислого газа, сердечного ритма и показателей дыхательных движений), концентрации лактата. Последующая работа F.J.Larsen и соавторов в 2010 году показала, что пищевые добавки нитрата натрия (0,1 ммол/кг в течение 2-х дней) редуцируют пик VO2 (примерно 100 мл/мин) при максимальной интенсивности тренировок. Как считают авторы, механизмами влияния нитрата натрия в процессе тренировок на выносливость являются модуляция митохондриального дыхания через синтез NO, т.к. в обоих исследованиях наблюдалось значительное возрастание в плазме метаболитов NO (нитраты/нитриты). Эта гипотеза получила в дальнейшем подтверждение в работе этих же авторов в 2011 году. В эксперименте in vitro выявлена способность нитрата натрия повышать эффективность митохондриального дыхания (измерялась как количество потребляемого молекулярного кислорода на единицу продукции АТФ – соотношение Р/О). Несмотря на это, никаких прямых доказательств влияния нитрата натрия на физическую готовность (мощность, силу, выносливость) в спорте получено не было.

Растительное сырье как источник нитратов[править]

Выбор того или иного растения для создания БАДов, которые могут рассматриваться как донаторы оксида азота для целей спортивной медицины, определяется количественным содержанием нитратов. Ниже приведена таблица с данными по различным растениям, хотя диапазон колебаний для любого растительного сырья бывает достаточно велик (данные SDA – Австралийское Общество Спортивных Диетологов) (F.J.Larsen и соавт., 2007).

Таблица 2. Содержание нитратов в различных растительных источниках (данные Института Спорта Австралии).

Уровень содержания нитратов Количественные параметры Растения
Очень высокий 2500 мг/40 ммол Свекольный сок, красный шпинат (амарант), сельдерей листья, зеленый салат, руккола
Высокий 1000-2500 мг/18-40 ммол Китайская капуста, корень сельдерея, эндивий зимний, лук-порей, кольраби
Средний 500-1000 мг/9-18 ммол Капуста, укроп, морковный сок
Низкий 200-500 мг/3-9 ммол Брокколи, огурцы, тыквенный сок
Очень низкий <200 мг/<3 ммол Аспарагус, артишок, горох, томат, дыня, картофель, грибы и др.

Фармакокинетика прямых донаторов оксида азота[править]

K.L. Jonvik и соавторы (2016) провели в Голландии прямое сравнение фармакокинетики различных представителей группы прямых донаторов оксида азота у здоровых нормотензивных мужчин и женщин по динамике изменений концентрации нитратов и нитритов в плазме крови и артериального давления после перорального приема. Исследование было рандомизированным перекрестным, в него включены 11 мужчин и 7 женщин (возраст 28 ± 1 год, индекс массы тела ИМТ - 23 ± 1 кг/м2). Анализировались данные по 4 группам, принимавшим следующие напитки, которые были эквивалентны по нитратам, и содержали их в количестве 800 мг (примерно 12,9 ммол/л): нитрат натрия (NaNO3); концентрат свекольного сока; сок рукколы; сок шпината. Концентрация нитратов и нитритов плазмы крови, кровяное давление определялись до и в процессе 300 минут после приема напитков. После приема всех напитков концентрации нитратов и нитритов достоверно возрастали (P < 0,001). Пик концентрации нитратов был примерно одинаковым для всех напитков: NaNO3 - 583 ± 29 мкмол/л, свекольный сок - 597 ± 23 мкмол/л, сок рукколы - 584 ± 24 мкмол/л, сок шпината - 584 ± 23 мкмол/л. Однако пик концентрации нитритов различался: NaNO3 - 580 ± 58 нмол/л, свекольный сок - 557 ± 57 нмол/л, сок рукколы - 643 ± 63 нмол/л, сок шпината - 980 ± 160 нмол/л, P = 0.016). По сравнению с исходными значениями систолическое АД снижалось через 150 минут после приема свекольного сока (со 118 ± 2 до 113 ± 2 мм Hg; P < 0,001) и сока рукколы (со 122 ± 3 до 116 ± 2 мм Hg; P = 0,007) и к 300 минуте после приема сока шпината (со 118 ± 2 до 111 ± 3 мм Hg; P < 0,001), но не изменялось в течение всего периода наблюдения под влиянием раствора NaNO3. Диастолическое давление достоверно снижалось после приема всех напитков к 150-ой минуте (P < 0,05), и сохранялось пониженным до 300-ой минуты наблюдения для приема двух напитков – с рукколой и шпинатом. Кроме данных о динамике изменений концентрации нитратов и нитритов (пик на 120-150 минутах с постепенным снижением к 300 минуте), полученные результаты свидетельствуют о слабой функциональной эффективности нитрата натрия, что, в целом, согласуется с результатами других исследований данного соединения в спорте. Кроме того, далеко не всегда функциональный результат растительных донаторов оксида азота коррелирует с содержанием в них нитратов и изменениями нитратов/нитритов в плазме крови. В целом период полураспада прямых донаторов азота растительного происхождения составляет 4-5 часов, что следует учитывать при определении временных параметров однократного и курсового назначения.

Механизм действия и функциональные эффекты растительных донаторов оксида азота в спорте[править]

Механизм действия всех прямых донаторов окиси азота (не только свекольного сока) заключается в снижении потребности организма в поступлении кислорода и оптимизации расхода энергии на единицу выполненной работы. Пищевые нитраты метаболизируют в организме до нитритов и оксида азота, особенно в условиях недостаточного обеспечения кислородом и ацидоза, которые возникают в процессе тренировок. Концентрат свекольного сока отнесен к нутриентам с высокой степенью доказанной эффективности, при этом максимальные эргогенные свойства отмечаются при повторяющихся циклах упражнений короткой продолжительности, но высокой интенсивности, чередующихся с короткими восстановительными периодами. Эффект свекольного сока или его концентрата носит дозо-зависимый характер: концентрация нитритов в крови при увеличении дозы свекольного сока прогрессивно возрастает.

Суммарно, механизмы положительного влияния растительных донаторов оксида азота на сегодняшний день сводятся к следующему (A.M.Jones, 2014):

  • Расширение сосудов и улучшение кровотока через мышцы и другие органы
  • Снижение потребности в кислороде в процессе физической нагрузки и последующее изменение энергетического метаболизма мышц
  • Повышение эффективности (КПД)) энергетических процессов в митохондриях (стимуляция митохондриального дыхания)
  • Уменьшение потерь креатина мышцами, большая экономичность мышечного сокращения (повышение контрактильной способности мышечных волокон при меньших затратах энергетического субстрата – АТФ).
  • Активация и оптимизация внутриклеточных экстра-митохондриальных процессов, связанных с обменом и переносом Са.

В более поздней работе A.M.Jones и соавторы (2016) провели подробное исследование в экспериментальных условиях и у человека влияния нитратов на конкретные типы мышечных волокон. Как хорошо известно, тип мышечного волокна (I тип – медленно-сокращающиеся, II тип – быстро-сокращаюшиеся) определяет различие в параметрах функциональной активности мышц и может вносить вклад в конечный результат действия пищевых добавок, влияющих на показатели силы, мощности и выносливости. Авторы показали преимущественную направленность влияния нитратов на II тип мышечных волокон, что имеет непосредственное прикладное значение: применение при тех видах физического напряжения, где состояние «быстрых» мышечных волокон наиболее важно.

Однако, было бы неправильным рассматривать механизм действия растительных БАДов – донаторов оксида азота (по классификации) – только с позиций изменения функционирования системы NO. Более того, очень часто невозможно объяснить качественные и количественные изменения в организме спортсменов при приеме растительных соков и экстрактов с нитратами вмешательством в метаболизм NO. В связи с этим, в данном обзоре мы сочли необходимым рассмотреть и другие метаболические эффекты и механизмы действия основных прямых донаторов окиси азота в спорте – свекольного сока и сока шпината (амаранта) (см. далее в этом разделе).

Свекольный сок и его концентраты (экстракты)[править]

Свекольный сок и его экстракты с позиций доказательной медицины в спорте отнесены к группе «А» в раздел «Средства, влияющие на выносливость». С практической точки зрения выделяют острые (при однократном применении) и хронические (при курсовом назначении) эффекты свекольного сока и его различных форм.

Хотя в данном обзоре акцентируется внимание на свекольном соке как донаторе оксида азота в процессе физических тренировок, вырывать это действие из контекста суммарного эффекта всего состава сока было бы неправильно. В состав свекольного сока входит ряд компонентов, которые не просто сопровождают действие NO, но и имеют самостоятельное важное значение в повышении физической формы спортсменов. И механизмы, лежащие в основе набирающего популярность свекольного сока, также гораздо сложнее и не могут быть объяснены только влиянием на продукцию NO. Поэтому рассмотрим последовательно основные компоненты (активные вещества) свекольного сока и возможные механизмы их влияния на работоспособность организма в процессе физических нагрузок. В обзоре T.Clifford и соавторов (2015) схематично представлен состав активных компонентов свекольного сока (рис.4).

Рис.4. Потенциально биоактивные вещества в составе свекольного сока (из обзора T.Clifford и соавторов (2015). Второй ряд сверху (слева-направо) – нитраты, фенолы, аскорбиновая кислота, каротиноиды, беталаины. Третий ряд сверху (слева-направо) – флавоноиды, феноловые кислоты, бетацианины, бетаксантины. Нижний ряд – бетанин и изобетанин, вульгаксантин I и II, индикаксантин. Энергетическая ценность свекольного сока примерно 29 ккал/100 г.

Роль фенолов (флавоноиды, феноловые кислоты, амиды фенолов) в физиологическом действии свекольного сока. Исследователи обращают внимание, прежде всего, на антиоксидантные свойства фенолов (Н.В.Озолина и соавт., 2014; J.Vasconcellos и соавт., 2016). За последние 15-16 лет выполнен ряд обзоров физиологической роли фенолов в повышении физической готовности у разных категорий лиц – от профессиональных спортсменов до людей, ведущих активный образ жизни (J.A.V.Garcia, R.Daoud, 2002; M.J. Ormsbee и соавт., 2013). Этим веществам посвящен наш отдельный обзор «Антиоксиданты в спортивной медицине». Очень кратко – физиологические эффекты и связанные с ними механизмы действия сводятся к нескольким положениям: 1) угнетение перекисного окисления липидов в биологических системах; 2) связывание реактивных кислородных радикалов в условиях их избыточного образования в процессе стресса, включая тренировочный и соревновательный процесс; 3) оптимизация профиля жирных кислот в плазме крови; 4) торможение образования и функции медиаторов воспаления (снижение посттравматических мышечных изменений и ускорение восстановления); 5) регулирование транспорта глюкозы и ряда других активных веществ.

Роль бетацианинов и бетаксантинов в физиологическом действии свекольного сока. На сегодняшний день обе эти группы веществ (суммарно называются беталаины - betalains), являющихся основными пигментами свекольного сока (бетацианин – красный, бетаксантин – желтый), также как и фенолы, рассматриваются в качестве антиоксидантов, защищающих организм в условиях физического и психологического стресса от повреждающего действия кислородных радикалов (J.Escribano и соавт., 1998; J.Kanner и соавт.,2001). Беталаины – высокоактивные растительные вещества (L.Tesoriere, 2004), обладающие способностью связывать свободные радикалы (V.G.Georgiev и соавт., 2010) и защищать клеточные мембраны от перекисного окисления липидов (J.Kanner и соавт., 2001). Эти свойства определяются наличием в структуре беталаинов фенольной и циклической аминогрупп, которые являются донаторами электронов и протонов. Нейтрализация супероксидных радикалов увеличивает биодоступность NO с последующим возрастанием кровотока и доставки кислорода. Беталаины также проявляют противовоспалительные свойства за счет снижения концентрации противоспалительных цитокинов - TNF-альфа и интерлейкина-6 (Z.Pietrzkowski и соавт., 2010). Совсем недавно появились данные о способности беталаинов (P.G.Bell и соавт., 2014) снижать проявления оксидативного стресса и воспаления, возникающих в процессе физических нагрузок и, тем самым, повышать физическую готовность. J.S. Van Hoorebeke и соавторы (2016) изучили действие беталаин-обогащенного концентрата свеклы на показатели физической готовности мужчин-бегунов на 5 км дистанции. Выявлено снижение прироста ЧСС во время нагрузки на 3%, уменьшение накопления лактата крови на 14%. У 10 из 13 испытуемых уменьшилось время прохождения 5-километровой дистанции (в среднем на 36 секунд). В совокупности с фенолами при длительном применении (курсовое назначение) они могут потенциально обеспечивать повышение устойчивости организма к длительным нагрузкам. Однако прямых исследований в спорте как фенолов, так и беталаинов, явно недостаточно, чтобы делать какие-либо окончательные выводы.

Влияние свекольного сока на показатели физической готовности при аэробных физических упражнениях. K.E.Lansley и соавторы (2011b) провели исследование на 9 здоровых мужчинах (две группы попеременно принимали либо 0,5 л свекольного сока – 6,2 ммол/день NO3-, либо свекольный сок с удаленными нитратами – плацебо – содержание нитратов 0,0034 ммол/день в течение 6 дней). В конце периода исследования проводился тест – несколько беговых спринтов субмаксимальной и высокой интенсивности (до истощения), и упражнения сгибания-разгибания в коленных суставах нарастающим темпом. По сравнению с плацебо в опытной группе увеличивалась на 105% концентрация нитритов в плазме крови и снижалась на 7% потребность в кислороде в условиях бега средней и высокой интенсивности. Кроме того, под влиянием свекольного сока на 15% увеличивалась продолжительность бега до истощения, и на 5% - способность к выполнению теста со сгибанием-разгибанием. Эти данные рассматриваются как способность свекольного сока увеличивать выносливость и экономичность выполнения физических упражнений, и указывают на связь таких положительных сдвигов с повышением концентрации NO в плазме крови. M.Murphy и соавторы (2012) в двойном-слепом плацебо-контролируемом перекрестном исследовании у 11-и мужчин и женщин (фитнесс) использовали запеченную свеклу и, в качестве плацебо, изокалорическую клюквенную закуску, за 75 минут до выполнения тестового задания (5-километровый бег на беговой дорожке). Выявлена тенденция уменьшения времени прохождения дистанции (ускорение в среднем на 41 секунду – 12,3±2.7 км/час против 11,9±2.6 км/час в контроле, P=0.06). При этом наибольшее преимущество выявлялось в конце дистанции в 5 км – на последних 1,8 км (5% увеличение скорости в группе со свекольным соком). Авторы делают заключение, что эргогенные достоинства пищевых добавок свекольного сока наиболее выражены в последней фазе бега, где требуется повышенная выносливость. Суммарные данные исследований, выполненных в этом направлении до 2013 года, представлены в таблице 3 из обзора M.J.Ormsbee и соавторов (2013).

За период после написания обзора M.J.Ormsbee и соавторов (2013) и до настоящего времени выполнено еще несколько работ. Показано, что пищевые добавки свекольного сока, содержащего примерно 5-8 ммол неорганических нитратов (NO-3), увеличивают концентрацию окиси азота плазмы (NO-2), снижают кровяное давление и могут позитивно влиять на физиологические эффекты тренировок за счет уменьшения потребности в кислороде во вдыхаемом воздухе. L.J.Wylie и соавторы (2016) в перекрестном исследовании на 10 здоровых мужчинах изучили влияние приема 70, 140 или 280 мл концентрированного свекольного сока (содержащего, соответственно, 4.2; 8.4 и 16.8 ммол NO-3) на эффекты физических упражнений на велотренажере средней и высокой интенсивности. Разные дозы свекольного сока давались непосредственно до начала тренировочных сессий, а ответ оценивался в сравнении с плацебо. Обнаружено, что однократный прием 70 мл сока не повышал эффективность тренировок. В то же время, более высокие дозы (140 и 280 мл) существенно снижали потребление кислорода и улучшали показатели выполнения тренировочных заданий.

Таблица 3. Исследования влияния свекольного сока (СВС) на показатели физической готовности человека, выполненные за период 2009-2013 годов (из обзора M.J.Ormsbee и соавт., 2013).

Авторы N Дизайн исследования Дозы СВС Полученные результаты (изменения под влиянием СВС)
S.J.Bailey и соавт. 2009 8 ДС-ПК-ПР 0,5 л СВС (5,5 ммол NO3) Снижение амплитуды медленного компонента VO2 повышение на 16% выполнения работы при высокой интенсивности нагрузок.
S.J.Bailey и соавт. 2010 7 Р-ДС-ПР 0,5 л СВС (5,5 ммол NO3) 25% увеличение времени работы до отказа; 25% снижение прироста легочного VO2 от отдыха до низкоинтенсивной тренировки; 52% снижение амплитуды медленного компонента VO2 при высокоинтенсивной тренировке; значительное снижение VO2 в конце тренировки низкой интенсивности и среднего VO2 в конце; 36% снижение утомляемости при разгибательных упражнениях; 59% снижение утомляемости при высокоинтенсивных тренировках.
A. Vanhatalo и соавт. 2010 8 БС-ПР 0,5 л СВС (5,2 ммол NO3) Увеличение показателей скорости выполнения работы и мощности, связанные с анаэробным порогом при приеме в течение 15 дней.
K.E.Lansley и соавт. 2011b 9 Р-ДС-ПР 0,5 л СВС (6,2 ммол NO3) Снижение VO2 на 7% при постоянном беге средней и высокой интенсивности.

Увеличение времени интенсивного бега до истощения на 15%, объема работы при упражнениях на разгибание в коленях.

K.E.Lansley и соавт. 2011a 9 Р-ПР 0,5 л СВС (6,2 ммол NO3) Снижение времени выполнения и увеличение мощности в тесте бега на 4 км (на 2,8% и 5%, соответственно);
Снижение времени выполнения и увеличение мощности в тесте бега на 16 км (на 2,7% и 6%, соответственно);
A.A.Kenjale и соавт. 2011 8 Р-ОТК-ПР 0,5 л СВС (18,1 ммол NO3) Увеличение переносимости нагрузок на 18%; снижение выделения О2 (48% на пике потребления)
A. Vanhatalo и соавт. 2011 9 Р-ДС-ПР 0,75 л СВС (9,3 ммол NO3) Снижение гипоксии мышц при высокоинтенсивных тренировках и возвращение переносимости тренировок к уровню «нормоксии».
M.Murphy и соавт. 2012 11 ДС-ПК-ПР 200 г СВС ?500 мг NO3 Незначительное увеличение скорости бега; повышение на 5% скорости бега на последнем отрезке (1,8 км) 5-и километровой дистанции.
N.M.Cermak и соавт. 2012a 12 ДС-ПР велосипедисты 140 мл конц.СВС (8 ммол NO3) Снижение среднего VO2 на 45% и повышение максимальной мощности на 65%; прохождение 10 км дистанции на 1,2% быстрее при 2,1% увеличение показателей мощности.
N.M.Cermak и соавт. 2012b 20 ДС-ПР велосипедисты ОД СВС 140 мл (8,7 ммол NO3) за час до теста Повышение концентрации нитритов плазмы; отсутствие изменений показателей физической готовности.
H.Bond и соавт. 2012 14 Р-ДС-ПР гребцы 0,5 л/день СВС (5,5 ммол NO3) 6 дней Увеличение показателей физической готовности гребцов при повторяющихся высокоинтенсивных упражнениях в среднем на 0,4%, а в конечных стадиях – на 1,7%.
D.P.Wilkerson и соавт. 2012 8 Р-ДС-ПР велосипедисты 0,5 л СВС/день Снижение потребления кислорода и улучшение показателей при беге на очень длинные дистанции.
Е.Masschelein и соавт. 2012 15 Р-ОС-ПР 0,07 ммол/кг/день 6 дней В условиях гипоксии в процессе отдыха и тренировки средней интенсивности насыщение кислородом артериальной крови было на 3,5% и 2,7% выше (соответственно), а VO2 ниже по сравнению с плацебо.
Р.М.Christensen и соавт. 2013 10 Р-ОС-ПР велосипедисты 0,5 л/день 6 дней Нет эффекта.
J.Kelly и соавт. 2013 9 Р-ДС-ПР 0,5 л/день 7-12 дней Увеличение переносимости физических нагрузок на 17%, 16% и 12% при работе на велотренажере на уровне 60%, 70% и 80% пика мощности, соответственно.
D.J.Muggeridge и соавт. 2013a 9 Р-ДС-ПР велосипедисты 70 мл СВС перед тестом: 15 мин субмакс работы + 16 км Снижение VO2 в процессе субмаксимальной тренировки (60% максимального темпа работы) при приеме однократной дозы СВС. Улучшение показателей физической готовности на дистанци 16 км.
D.J.Muggeridge и соавт. 2013b 8 Р-ДС-ПР байдарочники 70 мл СВС перед тестом: 5 спринтов + 1 км Снижение VO2 в процессе стабильных тренировок. Нет эффекта при повторяющихся супрамаксимальных спринтах, или 1 км дистанции на байдарке.
L.J.Wylie и соавт. 2013 10 БС-ПР 70 мл СВС (4,2 ммол NO3), 140 мл СВС (8,4 ммол NO3) 140 мл и 280 мл СВС снижают VO2 при тренировках средней интенсивности на 1,7% и 3%, соответственно, а также увеличивают время начала возникновения сбоев на 14% и 12%, соответственно. 70 мл СВС неэффективны. Доза нитратов 16,8 ммол не дает дополнительных преимуществ по сравнению с дозой 8,4 ммол.

Примечания: N – количество участников исследования; СВС – свекольный сок; ДС – двойное слепое исследование; ОС – одиночное слепое исследование; ПК – плацебо-контролируемое исследование; ПР – перекрестное исследование; Р – рандомизированное исследование; БС – балансированое исследование; ОТК – открытое исследование; ОД – однократная доза; эффект СВС проявляется тем выраженнее, чем больше уровень утомления в процессе длительных физических нагрузок.

Влияние свекольного сока на когнитивные функции. Поскольку донаторы оксида азота расширяют мозговые сосуды, C.Thompson и соавторы (2015) провели рандомизированное двойное-слепое перекрестное 7-дневное исследование у 16 мужчин – игроков одной команды влияния свекольного сока по сравнению с плацебо на показатели мозговой деятельности. Количество нитратов в составе сока было 800 мг/л (доза на день). Когнитивные функции оценивались на 7-ой день с помощью специальной системы тестов на велоэргометре (смена ритмов, время реакции на изменение заданий и т.п.). В группе, принимавшей свекольный сок, общий объем выполненной работы был выше. чем в контрольной группе. Время реакции на тестовые задания под влиянием свекольного сока было также значительно меньше, чем в контроле. Не отмечено различий в аккуратности выполнения заданий. Авторы делают вывод, что пищевые добавки свекольного сока не только улучшают физическую форму спортсменов, но препятствуют снижению когнитивных функций в процессе физических нагрузок (особенно, сохраняют хорошую реакцию) длительного прерывистого характера.

Применение растительных донаторов оксида азота в различных видах спорта[править]

Выполнен ряд исследований, посвященных анализу эргогенных эффектов пищевых нитратов в разных спортивных дисциплинах. Установлено, что выраженность биологического действия нитратов зависит от базового уровня физической подготовки со снижением результата по мере повышения физической формы и степени тренированности (R.Bescos и соавт., 2012; O.Peacock и соавт., 2012; D.P.Wilkerson и соавт., 2012; M.W.Hoon и соавт., 2014; J.T.Arnold и соавт., 2015). Ряд авторов подтвердили, что нитраты повышают аэробную и анаэробную физическую готовность у определенных категорий спортсменов (например, снижают потребление кислорода при субмаксимальных и максимальных нагрузках, увеличивают время наступления усталости, ускоряют прохождение некоторых дистанций (V.Borutaite и соавт., 1995; K.E.Lansley и соавт., 2011; F.J.Larsen и соавт., 2010; S.J.Bailey и соавт., 2009, 2010; K.E.Lansley и соавт., 2011; M.Murphy и соавт., 2012; M.Pinna и соавт., 2014).

Гребной спорт[править]

H.Bond и соавторы (2012) показали, что пищевые добавки нитратов в течение 6-и дней улучшают показатели 500-метрового спринта у элитных гребцов, особенно на поздних стадиях тренировки (4-6 повторения).

Плавание[править]

М.Pinna и соавторы (2014) выявили положительный эффект 6-дневного приема свекольного сока (5.5 ммол NO3 - ) на переносимость нагрузок и аэробную энергию на уровне анаэробного порога, но не в процессе выхода на максимум в возрастающем плавательном тесте. В условиях интервальных тренировок эффекты добавления пищевых нитратов более выражены в поздних циклах повторений. Тренировки пловцов и высокая конкуренция обусловливают частые выступления, иногда с коротким интервалом в течение одного соревнования, что требует высокой как аэробной, так и анаэробной физической готовности.

В работе B. Pospieszna и соавторов (2016) свекольный сок оказывал положительное влияние на физическую готовность женщин-пловцов. Как известно, пищевые добавки свекольного сока, содержащего примерно 5-8 ммол неорганических нитратов (NO-3), увеличивают концентрацию окиси азота плазмы (NO-2), снижают кровяное давление и теоретически могут позитивно влиять на физиологические эффекты тренировок пловцов за счет уменьшения потребности в кислороде во вдыхаемом воздухе. В двойном-слепом перекрестном исследовании польские спортивные медики исследовали эргогенные эффекты пищевых нитратов (свекольного сока с добавлением сока черноплодной рябины) у женщин-пловцов. Сравнивалось действие двух пищевых добавок с одинаковым содержанием окислов азота (5,1 ммол NO3-) при приеме в течение 8-и дней: 1) морковный сок и 2) смесь свекольного сока и сока черноплодной рябины. В таблице 4 приведены сравнительные данные состава этих двух видов пищевых добавок по наличию активных веществ.

Таблица 4. Биохимические характеристики смеси свекольного и черноплодного сока (СЧС) с морковным соком (МС) (по B. Pospieszna и соавт., 2016)

СЧС МС
Экстракт сока % 10,5 ± 0,2 10,5 ± 0,2
Нитраты ммол/л 10,2 ± 0,2 10,2 ± 0,2
ABTS мкмол Trolox/л 24,5 ± 1,1 0,6 ± 0,3
Титруемая кислотность % 2.5 ± 0.03 0.65 ± 0.05
Полифенолы мг/л 3231 ± 5.4 354 ± 12
Каротиноиды мг/л - 177
Антоцианины мг/л 298 ± 6 -
Красные пигменты мг/л 524 ± 4,1 -
Желтые пигменты мг/л 237 ± 3,2 -
Бетаин мг/л 1629 ± 12,2 -

В исследовании приняло участие 11 женщин-пловцов среднего уровня мастерства (возраст 20.9 ± 1.3 года; масса тела 64,4 ± 8.62 кг; рост 167,4 ± 4,76 см), регулярно тренирующихся (три сессии в неделю) и участвующих в соревнованиях регионального уровня. Плавательный тест состоял из двух частей: 1) анаэробная часть – шесть 50-метровых максимальных спринта; 2) задание на выносливость – непрерывное плавание на 80 метров. В течение всего теста измерялись артериальное давление и частота сердечных сокращений. Пищевые интервенции представляли два периода по 8 дней для всех участников с перерывом на 3 недели для смены принимаемой пищевой добавки («отмывочный» период). Объем сока составлял 0,5 литра ежедневно с 7 до 12 часов утра. В дни тестирования время потребления было ограничено: сразу после тренировочных тестов и за три часа до них.(в первый и восьмой дни, соответственно). Оба тестируемых сока были получены путем разведения концентрата при одинаковом содержании нитратов – 10,2 ммол/л (5,1 ммол на порцию). Состав описан в таблице. СЧС представлял собой смесь свекольного сока и сока черноплодной рябины в соотношении 7:3. Морковный сок имел начальный уровень нитратов 4,5 ммол/л, поэтому для уравнивания содержания нитратов с СЧС в него дополнительно вводились неорганические соли нитратов ( ?KNO3). Это не меняло органолептических свойств морковного сока. В начале этого перекрестного исследования добровольцы были рандомизированы в две подгруппы: одна стартовала с СЧС, другая – с МС. После трех недель «отмывочного» периода пловцы меняли принимаемый сок и пили его также в течение 8-и дней. На неделе до исследования участники проходили регулярное медицинское освидетельствование, в котором, кроме всего прочего, измерялся рост и масса тела. В процессе всего исследования участники избегали приема алкоголя и табака. Диета была стандартной для обычных дней тренировок и отдыха. Плавательный тренировочный тест (свободный стиль) состоял из двух частей:: анаэробная – шесть 50-метровых максимальных спринта, и аэробная на выносливость – непрерывное плавание на 800 метров. Между этими двумя частями имелся 10-минутный перерыв на пассивное восстановление. После каждой части теста измерялся пик повышения сердечного ритма. Результаты не выявили отличий во влиянии СЧС на изменения показателей сердечно-сосудистой системы в условиях физической нагрузки по сравнению с МС, что согласуется с данными более ранних исследований. В то же время, существенные преимущества выявлены при применении СЧС в отношении показателей физической готовности. Авторы делают заключение, что 8-дневное назначение свекольного сока с добавлением сока черноплодной рябины (соотношение 7:3) в дозе 0,5 л/день повышает тренировочную готовность пловцов как в плане развития максимальной мощности, так и выносливости (аэробный и анаэробный компоненты). В то же время, морковный сок, даже с высоким содержанием нитратов (равным таковому в свекольном соке), не оказывал аналогичного действия, что наводит на мысль о наличии дополнительных механизмов положительных свойств нитратов в составе СЧС (синергизм нитратов с другими веществами в составе свекольного сока; особая физико-химическая форма нитратов). С практической точки зрения, необходимо помнить, что свекольный сок дает окрашивание мочи в красный цвет ("beeturia" - red-hued urine), которое исчезает по мере выведения сока из организма.

Экстракт листьев красного шпината (Амаранта) в спорте[править]

Рис.5. Динамика изменения концентрации NO2 в слюне (по оси ординат в мкмол/л) после приема экстракта Амаранта (верхний график) или плацебо (нижний график)

Экстракт листьев красного шпината (Amaranthus dubius) – растительный донатор оксида азота (источник пищевых нитратов в спорте). По количеству нитратов превосходит свекольный сок в 4-4,5 раза. Однако это не означает и большую эффективность в плане повышения физической формы спортсменов. Экстракт Амаранта изучен гораздо меньше с научной и прикладной точек зрения, чем свекольный сок. Фармакокинетика экстракта Амаранта исследована в 2016 году D.Subramanian и S.Gupta (2016). Работа выполнена на 16 добровольцах-мужчинах, которые получали однократную дозу 2 грамма. Определялось содержание окислов азота в плазме крови и слюне через различные промежутки времени после приема пищевой добавки по сравнению с плацебо. Результаты показали, что уровень NO в исследуемой группе как в плазме, так и в слюне, значительно возрастал по сравнению с плацебо-группой. В то же время концентрация в плазме крови NO3- только слегка превышала таковую в контрольной группе, но в слюне – существенно больше (рис.5). Авторы делают заключение, что однократная доза Амаранта может значительно повышать доставку окислов азота к тканям в течение 8-и часов, и в этом плане не уступает экстракту свеклы. Существует целый ряд коммерческих БАДов с экстрактом Амаранта и, в частности, БАД под названием «Оксисторм» (Oxystorm). Содержание нитратов в этом растительном экстракте в пять раз выше, чем в экстракте свеклы, и в 50 раз, чем в свекольном соке. Оксисторм является стандартизированным по содержанию нитратов продуктом (9 г на 100 г порошка) и выпускается в виде порошка в капсулах (90 капсул). Имеет 100% растворимость в воде, не содержит сахара, оксалатов, имеет нейтральный рН. Эффективная доза нитратов при рекомендуемом назначении Оксисторма составит 90 мг/день, при этом рекомендуемые дозы нитратов для человека находятся в интервале 60-120 мг/день. Сравнительная характеристика составов Оксисторма и порошка свекольного сока дана в таблице 5.

Таблица 5. Сравнительная характеристика состава растительных донаторов оксида азота по основным параметрам.

Показатель Оксисторм Свекольный сок порошок
Растворимость Водорастворим Водорастворим
рН 7 5,5
Содержание сахара 0 30%
Нитраты ?9% <2%
Калий >10% <2%
Оксалаты Не определялись 10-15%
Мальтодекстрин 0 30%
Уровень стандартизации по содержанию нитратов 100% Колебания 2-5%
Уровень изученности в спорте низкий высокий

Как видно из таблицы, особенностями Оксисторма по сравнению с сухим концентратом свекольного сока является не только значительно большее содержание нитратов, но и в 5-кратное превышение содержания калия, отсутствие углеводов и оксалатов. Не имеет таких больших колебаний содержания нитратов, что делает эффект более предсказуемым. Первичные данные о положительном влиянии Оксисторма на физическую форму тренирующихся лиц получены в работе J.S.Martin и соавторов (2016) – снижение потребления кислорода и другие эффекты, свойственные нитратам прямого действия. Однако, требуются расширенные и углубленные исследования всего спектра, включая различные виды нагрузок и видов спорта при остром (однократном) и хроническом (курсовом) применении. Оксисторм может входить в состав различных готовых продуктов для спортивного питания (напитки, функциональная пища, жевательные конфеты и т.п.).

Официальные рекомендации по применению прямых донаторов оксида азота в спорте и их безопасности[править]

Существующие в настоящее время официальные национальные рекомендации по применению прямых донаторов оксида азота растительного происхождения в спорте весьма схожи, и могут быть рассмотрены на примере разработок Австралийского Института Спорта и Общества Спортивных Диетологов Австралии (Sport Dietitians Australia – SDA).

Дозирование и Протоколы применения[править]

Основываясь на результатах исследований с успешным применением нитратов в спорте рекомендуемые дозы составляют ~ 5-6 ммол (или примерно 300 мг), что эквивалентно 250-300 г овощей с высоким содержанием нитратов (см. таблицу 2 в данном обзоре). Однако, остается вопрос выбора: использовать ли просто овощи в дозе 250 г/день, или более концентрированную форму, например, свекольный сок или его концентрат? Частично ответ дан в разделе « Диета с повышенным содержанием нитратов как альтернатива пищевым добавкам прямых донаторов окиси азота» (см ниже). Другой важный аспект – время приема и выбор однократного (острого) или курсового (хронического) применения. В продаже в специализированных магазинах имеются все формы растительных нитратов. Соки и концентраты обеспечивают немедленный быстрый эффект при приеме за 2 часа до тренировки или соревнования. Доза подбирается заранее во время тренировочного процесса для получения оптимального результата, а затем используется во время соревнований.

При хроническом применении установлено, что дозировка 5-9 ммол/день растительных нитратов в течение 15 дней оказывает благоприятное воздействие на результаты тренировок (позиция Gatorade Sports Science Institute – GSSI; A.M.Jones, 2014, Великобритания). В зависимости от имеющихся возможностей, такое количество может быть обеспечено за счет функциональной пищи (с повышенным содержанием нитратов), а при недостатке такой пищи – добавками свекольного сока или сока амаранта (или соответствующих экстрактов). Нет данных, что дальнейшее повышение дозы может усиливать позитивное действие нитратов. Литературные данные показывают, что достаточно уже 2-6 дней приема 5-9 ммол нитратов в день для повышения физической формы при постоянных высокоинтенсивных тренировках и максимальных упражнениях возрастающей интенсивности. При однократном использовании в тех же условиях результаты были примерно 50:50 (эффективно или неэффективно). Однократное применение нитратов вызывает быстрое изменение сосудистого тонуса и периферической оксигенации тканей, но для получения стойких изменений функции митохондрий и сократительных белков (система актин-миозин) для повышения физической формы, требуется большее время. Продолжительность непрерывных упражнений максимальной интенсивности, в которых нитраты проявляют свои эргогенные свойства, составляет 5-30 минут. Доказательства их эффективности при продолжительности нагрузки более 40 минут весьма ограничены.

Для целей практического применения и обоснования выбора протоколов для донаторов оксида азота в спорте приводим точные рекомендации Австралийского Института Спорта (2011) (часть Государственной Программы развития пищевых добавок в Австралии):

Основные положения:

  • Пищевые нитраты быстро абсорбируются в желудке и тонком кишечнике при пике их концентрации в плазме крови после перорального приема примерно через 1 час. Значительная часть нитратов плазмы выделяется слюнными железами, где они конвертируются при помощи бактерий в нитриты в процессе кислород-независимой реакции. Заглатывание этих нитритов со слюной в кислой среде желудка дает начало процессу образования реактивных азотистых веществ, включая оксид азота (NO). Концентрация нитритов плазмы крови достигает пика примерно через 2,5 часа при употреблении пищевых нитратов. На эти процессы могут отрицательно влиять сопутствующее использование в ротовой полости антибактериальных препаратов (чистка зубов, жевательная резинка), снижающих активность бактериальной флоры.
  • Некоторые нитраты, участвующие в этом азотистом цикле, продуцируются в организме из продуктов разрушения NO, который регулирует ряд важных метаболических процессов в организме. В определенной мере это соотносится с обменом аминокислоты аргинина.
  • NO – очень важное химическое вещество, функции которого широко варьируют: от снижения тонуса сосудов (соответственно, снижение кровяного давления и оксигенации тканей) до регуляции агрегации тромбоцитов и иммунной системы.
  • Пищевые добавки нитратов усиливают некоторые известные функции NO даже у здоровых людей.
  • Ряд исследований показал, что выполнение клинических Протоколов с хроническим (курсы 3-15 дней) и острым (однократным, до тренировки) приемом свекольного сока приводит к стойкому повышению экономичности выполнения физических упражнений (снижение затрат кислорода на единицу выполненной работы на тренировках). Кроме того, свекольный сок увеличивает объем выполняемой работы и выносливость. Требуется дальнейшая детализация особенностей применения в зависимости от вида спорта, режима тренировок и индивидуальности спортсмена.
  • Как вариант может быть использована функциональная пища, содержащая повышенную концентрацию нитратов, или вариант диеты с добавлением растительных экстрактов.

Продукты и протоколы:

  • Продукты, доступные в Австралии: свекольный сок или концентрат 70-200 мл (содержание нитратов 260-300 мг на порцию).
  • Типичная однократная доза для тренировок 5-6 ммол или 300 мг на порцию за 2-2,5 часа до тренировки.
  • Самостоятельное приготовление свекольного сока из свеклы (или других соков из шпината и т.д.) не гарантирует нужного количества нитратов, т.к. Вы не можете их самостоятельно определить в сырье.
  • Нитраты могут также дополнительно поступать (неконтролируемо) в организм при употреблении мясных консервов или пресервов.
  • Требуются дополнительные исследования временных параметров применения нитратов, особенно у интенсивно тренирующихся лиц.

Ситуация с применением в спорте:

  • Недавние исследования идентифицировали ряд ситуаций, в которых использование свекольного сока перед тренировками повышает физическую форму и объем выполняемой работы – велосипедисты и бегуны при условии 4-30-минутной нагрузки.
  • Особенно целесообразно применение таких пищевых добавок при тренировках в условиях гипоксии (искусственной или естественной – тренировки на высокогорье).

Некоторые особенности использования нитратных растительных добавок:

  • Несмотря на то, что в настоящее время нет данных о каком-либо вреде потребления сока из свеклы или других растительных источников, необходимы крупные рандомизированные исследования как острой, так и хронической токсичности высоких доз нитратов.
  • Свекольный сок, особенно в концентрированной форме и больших дозах, может иногда вызывать желудочно-кишечный дискомфорт.
  • Потребление свекольного сока может явиться причиной временного окрашивания мочи и стула в красный цвет, что само по себе безобидно.
  • Применение нитрата натрия связано с повышенным риском ошибок в дозировке. Некоторые спортсмены ошибочно (или осознанно) используют нитрат натрия как пищевую добавку (вроде поваренной соли), что опасно для здоровья. Избыточное поступление нитрата натрия в организм может вызывать метгемоглобинемию – нарушение функции переноса кислорода кровью в результате трансформации гемоглобина.
  • Для проведения объективных исследований свекольного сока трудно подобрать плацебо (окрашивание мочи выдает назначенную добавку). В этой ситуации используют свекольный сок с предварительным удалением нитратов.

С точки зрения безопасности существует официальное мнение «Европейского Общества по Безопасности Пищи», где указывается: «польза от потребления овощей и фруктов с высоким природным содержанием нитратов перевешивает потенциальный риск для здоровья человека». Эта точка зрения основывается на потреблении 400 г смеси овощей и фруктов в день. Эпидемиологические исследования также подтвердили, что нитраты из пищи и воды не повышают риск возникновения онкологических заболеваний (World Health Organization “Guidelines for Drinking-water Quality. Nitrates and nitrites in drinking-water”. Geneva, Switzerland: WHO, 2004). В то же время, нет данных о безопасности потребления овощей и фруктов с искусственно повышенным (удобрения) содержанием нитратов. Поэтому важно обращать внимание на источник сырья и экологичность выращивания растений. В процессе хронического (курсового) использования свекольного сока надо контролировать функцию ЖКТ, т.к. сок может вызывать дискомфорт в желудке, избегать превышения рекомендованных доз. Надо понимать, что изучение нитратов как эргогенных веществ в спорте, находится в ранней стадии.

Диета с повышенным содержанием нитратов как альтернатива пищевым добавкам прямых донаторов окиси азота[править]

Интересное исследование выполнено S.Porcelli и соавторами (2016) совсем недавно в рамках развития современного подхода «функциональная пища» вместо «пищевых добавок к диете». По аналогии с противопоставлением «пищевых добавок протеинов» и «высокопротеиновой диеты», они поставили задачу исследовать потенциальный эргогенный эффект повышенного потребления нитратов в диете, основанной на овощах и фруктах, и биодоступность оксида азота из таких источников. Предпосылками этой работы явились данные о способности высоконитратной функциональной овощной диеты увеличивать концентрацию в плазме крови NO3- и NO2- до величин, сходных с результатом применения добавок свекольного сока или нитрата натрия (C.P.Bondonno и соавт., 2014; А.Ashworth и соавт., 2015). В рандомизированном перекрестном исследовании приняли участие 7 здоровых молодых мужчин, занимающихся баскетболом. Для оценки функционального состояния применялся велоэргометрический тест «до истощения» с регистрацией стандартных показателей. Диета соблюдалась в течение 7 дней до начала тестирования, контролировалась диетологом. Каждый участник получал оба варианта диеты последовательно (участвовал в обеих группах) с временным интервалом, необходимым для выведения веществ из первой диеты. Обе диеты отличались только по количеству потребляемых нитратов. Остальные параметры макронутриентов были следующими: калорийность 2200 ккал, 55% углеводов, 15% протеинов, 30% жиров. Характеристика различий контрольной диеты и диеты с высоким содержанием нитратов в исследовании приведена в таблице 6.

Таблица.6. Состав диет в исследовании S.Porcelli и соавторов (2016).

Контрольная диета (КД)

Пища Примерное количество в порциях на день Содержание NO3- ммол
Салатная смесь 180 г 2,4
Брокколи 60 г 0,4
Апельсиновый сок 150 г 0,0
Клюквенный сок 0,5 л 0,1

Диета с повышенным содержанием нитратов (ПН)

Пища Примерное количество в порциях на день Содержание NO3- ммол
Сырой шпинат 40 г 4,8
Приготовленная огородная капуста 80 г 3,2
Бананы 130 г 0,1
Гранатовый сок 0,5 л 0,1

Перед экспериментом исходные концентрации в плазме NO3- и NO2- составляли 24±8 мкмол и 118±32 мкмол, соответственно. В конце эксперимента в контрольной группе они составили 23±10 мкмол и 240±100 мкмол, соответственно (нет достоверных отличий от исходных цифр). В группе ПН показатели значительно воозросли - 127±64 мкмол и 350±120 мкмол, соответственно. По тесту велоэргометрии объемы VO2 и VE в ПН группе были достоверно ниже, чем в контрольной примерно на 15-18%, сердечный ритм и лактат крови практически не отличались. В прерывистых субмаксимальных упражнениях на утомляемость в ПН группе суммарные показатели превышали контроль примерно на 25%. Существенно лучше выглядели и результаты повторных спринтов в группе ПН, особенно в 3,4 и 5 подходах (на 8-9%).

Авторы работы делают заключение, что «потребление нитрат-обогащенной функциональной пищи может увеличивать концентрацию нитратов/нитритов в плазме крови и повышать физическую готовность. В частности, такие нутриционные интервенции редуцируют энергетические потребности в процессе тренировок средней интенсивности, улучшают работу мышц в ходе утомительных прерывистых субмаксимальных сокращений, и улучшают готовность к выполнению повторяющихся спринт-тестов. В то же время, максимальная изометрическая сила или пик мощности не изменяются. Т.о. высоконитратная диета – гибкий стратегический нутритивный метод выбора для повышения в плазме уровней нитратов/нитритов и улучшения выполнения аэробных упражнений средней интенсивности или готовности к высокоинтенсивным прерывистым упражнениям».

Темный шоколад как потенциальный активатор метаболического действия оксида азота[править]

В 2015 году Международное Общество Спортивного Питания (ISSN) опубликовало в своем журнале результаты исследований британских ученых (Kingston University, London; R.K.Patel и соавт., 2015) о сходстве эффектов темного шоколада и свекольного сока в улучшении физической формы спортсменов (J.Intern.Society of Sports Nutrition – JISSN). Ежедневное употребление в перерывах между обычными приемами пищи определенного количества темного шоколада повышает показатели выносливости. Одним из ведущих механизмов, как считают авторы работы, является усиление метаболического процесса образования NO за счет эпикатехина (флаванол, содержащийся в какао-бобах), что ведет к расширению сосудов и снижению потребления кислорода. Эпикатехин повышает биодоступность NO (C.G.Fraga, 2005; V.Sudarma и соавт., 2011) и воздействует на эндотелий сосудов (Y.Steffen и соавт., 2007; T.Schewe и соавт., 2008). Увеличение биодоступности NO и его активности расширяет сосуды и усиливает кровоток (M.B.Engler и соавт., 2004). Два более ранних исследования заложили основу для изучения эффектов темного шоколада в спорте. Они касались преимущественно влияния на сердечно-сосудистую функцию без особой фокусировки на физическую готовность. N.M.Berry и соавторы (2010) продемонстрировали снижение реакций артериального давления на физическую нагрузку под влиянием флаванола бобов какао у лиц с избыточным весом, улучшение показателей гемодинамики в группах кардиоваскулярного риска при нагрузках средней интенсивности. J.Allgrove и соавторы (2011) сообщили, что потребление темного шоколада (40 г в день) в течение 2-х недель вызывает снижение в крови маркеров оксидативного стресса в условиях тренировок в режиме «до истощения» и увеличивает мобилизацию свободных жирных кислот после нагрузки. По результатам этих двух работ предположено, что увеличение уровней NO приводит к улучшению показателей дыхательной функции при физической нагрузке средней интенсивности.

Исследование R.K.Patel и соавторов проведено у 9 велосипедистов, рандомизированных в две группы: контрольная (обычная расчетная диета в соответствии с потребностями спортсмена с замещением одного из дневных «перекусов» 40 г белого шоколада в течение двух недель); опытная (один из стандартных ежедневных «перекусов» замещен употреблением 40 г темного шоколада в течение двух недель). После первого двухнедельного этапа следовал 7-дневный интервал, после чего группы «обменивались» диетой и исследование продолжалось еще две недели. После каждой двухнедельной сессии оценивались результаты по серии тестов на велотренажере (2-х минутный максимальный спринт).

Рис.6. Кривые потребления кислорода (мл/кг/мин) участниками исследования в течение 20 минут (по оси абсцисс) в процессе цикла физической нагрузки средней интенсивности. BL – базовые показатели в процессе выполнения упражнений; WC – на фоне потребления белого шоколада; DC – на фоне потребления темного шоколада (по данным R.K.Patel и соавт., 2015). Остальные пояснения в тексте.

Выявлено, что спортсмены, употреблявшие темный шоколад, показали большую скорость работы (на 11% больше, чем на фоне белого шоколада, и на 21% - по сравнению с базовыми значениями), использовали меньше кислорода в процессе физической нагрузки средней интенсивности, а также преодолевали большую дистанцию за 2-минутный период. Авторы пришли к заключению, что такой режим питания может давать существенные преимущества при продолжительных постоянных тренировках, и сходен с влиянием употребления свекольного сока. К тому же приятный вкус шоколада, в отличие от свекольного сока, и отсутствие окрашивания мочи в красный цвет, дают дополнительные психологические преимущества «шоколадному» варианту. Также важен и энергетический аспект, отсутствующий у свекольного сока, – дополнительное количество калорий, которые получает спортсмен с употреблением шоколада. В планах исследователей прямое сравнение эффективности этих двух пищевых добавок.

Читайте также[править]

Ссылки[править]

  • Озолина Н.В., Макарова Л.Е., Возненко А.Н. и др. Антиоксидантный свойства фенолсодержащих экстрактов из вакуолярного сока стволовой свеклы после кислотного гидролиза. Химия растительного сырья. 2014, 3, 175-183.
  • Abel T., Knechtle B., Perret C. et al. Influence of chronic supplementation of arginine aspartate in endurance athletes on performance and substrate metabolism - a randomized, double-blind, placebo-controlled study. Int. J. Sports Med., 2005; 26 (5): 344-349.
  • Adams M.R., Forsyth C.J., Jessup W. et al. Oral L-arginine inhibits platelet aggregation but does not enhance endothelium- dependent dilation in healthy young men. J. Am. Coll. Cardiol., 1995, 26 (4): 1054-1061.
  • Allgrove J., Farrell E., Gleeson M. et al. Regular dark chocolate consumption's reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. IJSNEM. 2011, 21(2):113–123.
  • Alvares T.S., Conte-Junior C.A., Silva J.T., Paschoalin V.M.F. Acute L-Arginine supplementation does not increase nitric oxide production in healthy subjects. Nutrition and Metabolism 2012, 9:54 (8 pp).
  • Arnold J.T., Oliver S.J., Lewis-Jones T.M. et al. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl. Physiol. Nutr. Metab., 2015; 40(6): 590-595.
  • Ashworth A., Mitchell K., Blackwell J.R. et al. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr., 2015, 18, 2669–2678.
  • Australian Government, Australian Sports Commission, Australian Institute of Sport. Beetroot juice/Nitrate. Supplement Overview. 2011. AIS sports supplement Program.
  • Bailey S.J., Winyard P., Vanhatalo A. et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol., 2009; 107: 1144-1155.
  • Bailey S.J., Fulford J., Vanhatalo A. et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol., 2010; 109: 135-148.
  • Bailey S.J., Winyard P.G., Vanhatalo A. et al. Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J. Appl. Physiol., 2010b, 109 (5): 1394-1403.
  • Bell P.G., Walshe I.H., Davidson G.W. et al. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients, 2014, 6, 829–843.
  • Bendahan D., Mattei J.P., Ghattas B. et al. Citrulline/malate promotes aerobic energy production in human exercising muscle. Br. J. Sports Med., 2002, 36 (4): 282-289.
  • Berry N.M., Davison K., Coates A.M. et al. Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise. Br.J.Nutr., 2010, 103(10):1480–148.
  • Bescos R, Gonzalez Haro C, Pujol P, et al. Effects of dietary L-Arginine intake on cardiorespiratory and metabolic adaptation in athletes. Int. J. Sport Nutr. Exerc. Metab., 2009, 19: 355-365.
  • Bescos R., Ferrer-Rocca V., Galilea P.A. et al. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med. Sci. Sport Exer., 2012a; 44(12): 2400-2409.
  • Bescos R., Sureda A., Tur J.A. et al. The Effect of Nitric-Oxide-Related Supplements on Human Performance. Sports Medicine, 2012b, 42(3):1-19.
  • Bloomer R.J. Nitric oxide supplements for sports. J. Strength Cond. Res., 2010; 32 (2): 14-20
  • Bloomer R.J., Farney T.M., Trepanowski J.F. et al. Comparison of pre-workout nitric oxide stimulating dietary supplements on skeletal muscle oxygen saturation, blood nitrate/nitrite, lipid peroxidation, and upper body exercise performance in resistance trained men. J. Int. Soc. Sports Nutr., 2010, 7: 16.
  • Bond H., Morton L., Braakhuis A.J. Dietary nitrate supplementation improves rowing performance in welltrained rowers. Int.J. Sport Nutr. Exerc. Metab., 2012; 22(4): 251-256.
  • Bondonno C.P., Liu A.H., Croft K.D. et al. Short-term effects of nitrate-rich green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure. Free Radic. Biol. Med., 2014, 77, 353–362.
  • Borutaite V., Mildaziene V., Brown G.C., Brand M.D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? BBA-Mol Basis Dis., 1995; 1272(3): 154-158.
  • Buford B.N., Koch A.J. Glycine-arginine-alpha-ketoisocaproic acid improves performance of repeated cycling sprints. Med. Sci. Sports Exerc., 2004; 36 (4): 583-587.
  • Camic C.L., Housh T.J., Zuniga J.M. et al. Effects of arginine based supplements on the physical working capacity at the fatigue threshold. J. Strength Cond. Res., 2010; 24 (5):1306-1312.
  • Campbell B., Roberts M., Kerksick C. et al. Pharmacokinetics, safety, and effects on exercise performance of L-arginine alpha-ketoglutarate in trained adult men. Nutrition, 2006; 22 (9): 872-881.
  • Cermak N.M., Gibala M.J., van Loon L.J. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int. J.Sport Nutr. Exerc. Metab., 2012a, 22(1):64–71.
  • Cermak N.M., Res P., Stinkens R. et al. No improvement in endurance performance after a single dose of beetroot juice. Int. J. Sport Nutr. Exerc. Metab., 2012b, 22(6): 470–478.
  • Chin-Dusting J.P., Alexander C.T., Arnold P.J. et al. Effects of in vivo and in vitro L-arginine supplementation on healthy human vessels. J. Cardiovasc. Pharmacol., 1996, 28(1): 158-166.
  • Christensen P.M., Nyberg M., Bangsbo J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand.J.Med. Sci. Sports. 2013, 23(1):e21–e31.
  • Clifford T., Howatson G., West D.J., Stevenson E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients, 2015, 7: 2801-2822.
  • Close G.L., Hamilton L., Philp A. et al. New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine, 2016, 98:144–158.
  • Colombani P.C., Bitzi R., Frey-Rindova P. et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur. J. Nutr., 1999, 38 (6): 263-270.
  • Engler M.B., Engler M.M., Chen C.Y. et al. Flavonoid-Rich Dark Chocolate Improves Endothelial Function and Increases Plasma Epicatechin Concentrations in Healthy Adults. J. Am. Coll. Nutr., 2004, 23:197–204.
  • Escribano J., Pedreno M.A., Garcia-Carmona F., Munoz R. Characterization of the antiradical activity of betalains from beta vulgaris L. roots. Phytochem. Anal., 1998, 9(3):124–127.
  • Evans R.W., Fernstrom J.D., Thompson J. et al. Biochemical responses of healthy subjects during dietary supplementation with L-arginine. J. Nutr. Biochem. 2004, 15(9):534-539.
  • Fraga C.G. Cocoa diabetes and hypertension: Should we eat more chocolate? Am. J. Clin. Nutr., 2005, 81(3):541–542.
  • Fricke O., Baecker N., Heer M. et al. The effect of L-arginine administration on muscle force and power in postmenopausal women. Clin. Physiol. Funct. Imaging, 2008; 28 (5):307-311.
  • Garcia J.A.V., Daoud R. The effect of phenolic antioxidant in high performance sports. Fitness and Performance Journal, 2002, 1(4): 21-27.
  • Georgiev V.G., Weber J., Kneschke E.M. et al. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum. Nutr., 2010, 65, 105–111.
  • Harvey P. et al. Abstracts: 56th Annual Conference Translational Nutrition: Optimizing Brain Health - The Effects of Inositol-Stabilized Arginine Silicate on Cognitive Function. J. Amer. Coll. Nutr., 2015, 34(6):544-547.
  • Hickner R.C., Tanner C.J., Evans C.A. et al. L-citrulline reduces time to exhaustion and insulin response to a graded exercise test. Med. Sci. Sports Exerc., 2006; 38 (4): 660-666.
  • Hoon M.W., Hopkins W.G., Jones A.M. et al. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl. Physiol. Nutr. Metab., 2014; 39(9): 1043-1049.
  • Jones A.M. Dietary Nitrate Supplementation and Exercise Performance. Sports Med., 2014, 44 (Suppl 1):S35–S45.
  • Jones A.M., Ferguson S.K., Bailey S.J. et al. Does the ergogenicity of dietary nitrate depend on specific effects on type II muscle? Exer.Sport Sci.Rev.,2016, 30 pp.
  • Jonvik K.L., Nyakayiru J., Pinckaers P.J.M. et al. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults. J.Nutrition, 2016, doi: 10.3945/jn.116.229807.
  • Kalman D. et al. A clinical evaluation to determine the safety, pharmacokinetics and pharmacodynamics of an inositol-stabilized arginine silicate dietary supplement in healthy adult males.” Clin. Pharmacol., 2015,7:103-109.
  • Kanner J., Harel S., Granit R. Betalains – a new class of dietary cationized antioxidants. J. Agric. Food Chem., 2001, 49(11):5178–5185.
  • Kelly J., Vanhatalo A., Wilkerson D.P. et al. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med. Sci. Sports Exerc., 2013, 45(9):1798–1806.
  • Kenjale A.A., Ham K.L., Stabler T. et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol., 2011, 110(6):1582–1591.
  • Koppo K., Taes Y.E., Pottier A. et al. Dietary arginine supplementation speeds pulmonary VO2 kinetics during cycle exercise. Med. Sci. Sports Exerc., 2009; 41 (8):1626-1632.
  • Lansley K.E., Winyard P.G., Bailey S.J. at al. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sport Exer., 2011a; 43(6): 1125-1131.
  • Lansley K.E., Winyard P.G., Fulford J. et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J. Appl. Physiol., 2011b; 110: 591-600.
  • Larsen F.J., Weitzberg E. et al. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiologica, 2007, 191(1): 59-66.
  • Larsen F.J., Weitzberg E., Lundberg J.O., Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radical Bio. Med., 2010; 48: 342-347.
  • Larsen F.J., Schiffer T.A., Borniquel S. et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab., 2011, 13 (2): 149-159.
  • Liu T.H., Wu C.L., Chiang C.W. et al. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J. Nutr. Biochem., 2008, 20 (6): 462-468.
  • Mariotti F., Petzke K.J., Bonnet D. et al. Kinetics of the utilization of dietary arginine for nitric oxide and urea synthesis: insight into the arginine–nitric oxide metabolic system in humans. Am. J. Clin. Nutr. 2013, 97:972–979.
  • Martin J.S. et al. The Effects Of A Novel Red Spinach Extract On Graded Exercise Testing Performance. Off. J. Amer. Coll. Sports Med., 2016, 48 (5S): S189.
  • Masschelein E., Van Thienen R., Wang X. et al. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J Appl Physiol. 2012, 113(5): 736–745.
  • Minuskin M.L., Lavine M.E., Ulman E.A. et al. Nitrogen retention, muscle creatine and orotic acid excretion in traumatized rats fed arginine and glycine enriched diets. J. Nutr., 1981, 111 (7): 1265-1274.
  • Muggeridge D.J., Howe C.C., Spendiff O. et al. A single dose of beetroot juice enhances cycling performance in simulated altitude. Med. Sci. Sports Exerc., Epub July 10, 2013a.
  • Muggeridge D.J., Howe C.C., Spendiff O. et al. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int. J. Sport Nutr. Exerc. Metab., Epub April 9, 2013b.
  • Murphy M., Eliot K., Heuertz R.M., Weiss E. Whole beetroot consumption acutely improves running performance. J. Acad. Nutr. Diet., 2012; 11(4): 548-552.
  • Olek R.A., Ziemann E., Grzywacz T. et al. A single oral intake of arginine does not affect performance during repeated Wingate anaerobic test. J. Sports Med. Phys. Fitness, 2010; 50 (1): 52-56.
  • Ormsbee M.J., Lox J., Arciero P.J. Beetroot juice and exercise performance (review). Nutrition and Dietary Supplements. 2013,5: 27-35.
  • Patel R.K., Brouner J., Spendiff O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. Patel et al. J. Intern. Soc. Sports Nutr., 2015, 12:47-55.
  • Peacock O., Tj?nna A.E., James P. et al. Dietary nitrate does not enhance running performance in elite crosscountry skiers. Med. Sci. Sport Exer., 2012: 44(11): 2213- -2219.
  • Perez-Guisado J., Jakeman P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res., 2010, 24 (5):1215-1222.
  • Petroczi A., Naughton D.P. Potentially fatal new trend in performance enhancement: a cautionary note on nitrite. J. Int. Soc. Sports Nutr., 2010; 7 (1): 25.
  • Pietrzkowski Z., Nemzer B., Sporna A. et al. Influence of betalin-rich extracts on reduction of discomfort associated with osteoarthritis. New Med., 2010, 1, 2–17.
  • Pinna M., Roberto S., Milia R. et al. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients, 2014; 6: 605-615.
  • Pospieszna B., Wochna K., Jerszynski D. et al. Ergogenic effects of dietary nitrates in female swimmers. Trends in Sport Sciences, 2016, 1(23): 13-20.
  • Proctor S.D., Kelly S.E., Vine D.F., Russell J.C. Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin-resistant JCR:LA-cp rat. Metabolism. 2007, 52: 1318–1325.
  • Rood-Ojalvo S. et al. The benefits of inositol-stabilized arginine silicate as a workout ingredient. J. Int. Soc. Sports Nutr., 2015, 12(Suppl 1):P14.
  • Schewe T., Steffen Y., Sies H. How do dietary flavanols improve vascular function? A position paper. Arch. Biochem. Biophys., 2008, 476:102–106.
  • Schwedhelm E., Maas R., Freese R. et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br. J. Clin. Pharmacol., 2008, 65(1): 51–59.
  • Shen W., Xu X., Ochoa M. et al. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ.Res 1994, 75 (6): 1086-1095.
  • Steffen Y., Schewe T., Sies H. (-)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochem. Biophys. Res.Commun., 2007, 359:828–833.
  • Stevens B.R., Godfrey M.D., Kaminski T.W. et al. High intensity dynamic human muscle performance enhanced by a metabolic intervention. Med. Sci. Sports Exerc., 2000, 32 (12): 2102-2108.
  • Subramanian D., Gupta S. Pharmacokinetic study of amaranth extract in healthy human subjects-A randomized trial. Nutrition, 2016, 32(7-8):748-753.
  • Sudarma V., Sukmaniah S., Siregar P. Effect of Dark Chocolate on Nitric Oxide Serum Levels and Blood Pressure in Prehypertension Subjects. Acta Med.Indones, 2011, 43(4):224–228.
  • Sunderland K.L., Greer F., Morales J. VO2max and ventilator threshold of trained cyclists are not affected by 28-day l-arginine supplementation. J. Strength Cond. Res., 2011; 25 (3): 833-837.
  • Sureda A., Cordova A., Ferrer M.D. et al. Effects of L-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic. Res., 2009, 6: 1-8.
  • Sureda A., Cordova A., Ferrer M.D. et al. L-Citrulline malate influence over branched chain amino acid utilization during exercise. Eur. J. Appl. Physiol., 2010; 110 (2):341-351.
  • Tangphao O., Grossman M., Chalon S., Hoffman B.B., Terrence F. Pharmacokinetics of intravenous and oral L-arginine in normal volunteers. Br. J. Clin. Pharmacol. 1999, 47:261–266.
  • Tesoriere L., Allegra M., Butera D., Livrea M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr., 2004, 80, 941–945.
  • Thompson C., Wylie L.J., Fulford J. et al. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise Eur.J.Appl.Physiol., 2015 DOI 10.1007/s00421-015-3166-0.
  • Tsai P.H., Tang T.K., Juang C.L. et al. Effects of arginine supplementation on post-exercise metabolic responses. Chin. J. Physiol., 2009, 52 (3): 136-142.
  • Vanhatalo A., Bailey S.J., Blackwell J.R. et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010; 299 (4): 1121-1131.
  • Vanhatalo A., Fulford J., Bailey S.J. et al. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J. Physiol., 2011, 589(Pt 22): 5517–5528.
  • Van Hoorebeke J.S., C.O. Trias, B.A. Davis et al. Betalain-Rich Concentrate Supplementation

Improves Exercise Performance in Competitive Runners. Sports,2016,4,40; doi:10.3390/sports4030040.

  • Vasconcellos J., Conte-Junior C., Silva D. Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Science and Biotechnology, 2016, 25(1): 79–84.
  • Wilkerson D.P., Hayward G.M., Bailey S.J. et al. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol., 2012; 112(12): 127-134.
  • Wylie L.J., Kelly J., Bailey S.J. et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J. Appl. Physiol., 2013, 115(3):325–336.
  • Wylie L.J., Balley S.J., Kelly J. et al. Influence of beetroot juice supplementation on intermittent exercise performance. Eur.J.Appl.Physiol., 2016, 116: 415-425.